Mathieu Anel, Georg Biedermann, Eric Finster & André Joyal (2017):
A Generalized Blakers-Massey Theorem.
Available at https://arxiv.org/abs/1703.09050.
Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Kuen-Bang Hou (Favonia), Robert Harper & Daniel R. Licata (2017):
Cartesian Cubical Type Theory.
Available at https://github.com/dlicata335/cart-cube.
Preprint.
Carlo Angiuli, Robert Harper & Todd Wilson (2017):
Computational Higher-Dimensional Type Theory.
In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017.
ACM,
New York, NY, USA,
pp. 680–693,
doi:10.1145/3009837.3009861.
Carlo Angiuli, Kuen-Bang Hou (Favonia) & Robert Harper (2017):
Computational Higher Type Theory III: Univalent Universes and Exact Equality.
Available at https://arxiv.org/abs/1712.01800.
Danil Annenkov, Paolo Capriotti & Nicolai Kraus (2017):
Two-Level Type Theory and Applications.
Available at https://arxiv.org/abs/1705.03307.
Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen & Enrico Tassi (2011):
The Matita Interactive Theorem Prover.
In: Automated Deduction - CADE-23 - 23rd International Conference on Automated Deduction, Wroclaw, Poland, July 31 - August 5, 2011. Proceedings,
pp. 64–69,
doi:10.1007/978-3-642-22438-6_7.
Joseph L. Bates (1981):
A Logic for Correct Program Development.
Technical Report TR81-455.
Cornell University.
Available at http://hdl.handle.net/1813/6295.
Revision of Cornell University Ph.D. thesis submitted August 1979.
Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman, Matthieu Sozeau & Bas Spitters (2017):
The HoTT Library: A Formalization of Homotopy Type Theory in Coq.
In: Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs,
CPP 2017.
ACM,
New York, NY, USA,
pp. 164–172,
doi:10.1145/3018610.3018615.
Marc Bezem, Thierry Coquand & Simon Huber (2014):
A model of type theory in cubical sets.
In: 19th International Conference on Types for Proofs and Programs (TYPES 2013) 26.
Dagstuhl Publishing,
Toulouse, France,
pp. 107–128,
doi:10.4230/LIPIcs.TYPES.2013.107.
Edwin Brady (2013):
Idris, a general-purpose dependently typed programming language: Design and implementation.
Journal of Functional Programming 23(5),
pp. 552–593,
doi:10.1017/S095679681300018X.
Guillaume Brunerie (2016):
On the homotopy groups of spheres in homotopy type theory.
Université Nice Sophia Antipolis.
Available at https://arxiv.org/abs/1606.05916.
Guillaume Brunerie, Kuen-Bang Hou (Favonia), Evan Cavallo, Eric Finster, Jesper Cockx, Christian Sattler, Chris Jeris & Michael Shulman (2018):
Homotopy Type Theory in Agda.
Available at https://github.com/HoTT/HoTT-Agda.
Evan Cavallo & Robert Harper (2018):
Computational Higher Type Theory IV: Inductive Types.
Available at https://arxiv.org/abs/1801.01568.
Cyril Cohen, Thierry Coquand, Simon Huber & Anders Mörtberg (2018):
Cubical Type Theory: A Constructive Interpretation of the Univalence Axiom.
In: 21st International Conference on Types for Proofs and Programs (TYPES 2015) 69.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany,
pp. 5:1–5:34,
doi:10.4230/LIPIcs.TYPES.2015.5.
Cyril Cohen, Thierry Coquand, Simon Huber & Anders Mörtberg (2018):
cubicaltt: Experimental implementation of Cubical Type Theory.
https://github.com/mortberg/cubicaltt.
Robert L. Constable, et al. (1985):
Implementing Mathematics with the Nuprl Proof Development Environment.
Prentice-Hall,
Englewood Cliffs, NJ.
Available at http://www.nuprl.org/book/.
Floris van Doorn, Jakob von Raumer & Ulrik Buchholtz (2017):
Homotopy Type Theory in Lean.
In: Interactive Theorem Proving.
Springer,
Cham,
pp. 479–495,
doi:10.1007/978-3-319-66107-0_30.
Michael Gordon, Robin Milner & Christopher Wadsworth (1979):
Edinburgh LCF: A Mechanized Logic of Computation.
Lecture Notes in Computer Science 78.
Springer-Verlag,
Berlin, Heidelberg,
doi:10.1007/3-540-09724-4.
Chris Kapulkin & Peter LeFanu Lumsdaine (2016):
The Simplicial Model of Univalent Foundations (after Voevodsky).
Available at https://arxiv.org/abs/1211.2851.
Peter LeFanu Lumsdaine & Mike Shulman (2017):
Semantics of higher inductive types.
Available at https://arxiv.org/abs/1705.07088.
P. Martin-Löf (1984):
Constructive Mathematics and Computer Programming.
Philosophical Transactions of the Royal Society of London Series A 312,
pp. 501–518,
doi:10.1098/rsta.1984.0073.
Conor McBride (2005):
Epigram: Practical Programming with Dependent Types.
In: Proceedings of the 5th International Conference on Advanced Functional Programming,
AFP'04.
Springer-Verlag,
Berlin, Heidelberg,
pp. 130–170,
doi:10.1007/11546382_3.
Arnaud Spiwack (2011):
Verified Computing in Homological Algebra, A Journey Exploring the Power and Limits of Dependent Type Theory.
École Polytechnique.
Available at https://pastel.archives-ouvertes.fr/pastel-00605836.
Jonathan Sterling & Robert Harper (2017):
Algebraic Foundations of Proof Refinement.
Available at https://arxiv.org/abs/1703.05215.
The RedPRL Development Team (2018):
RedPRL – the People's Refinement Logic.
Available at http://www.redprl.org/.
The Univalent Foundations Program (2013):
Homotopy Type Theory: Univalent Foundations of Mathematics.
http://homotopytypetheory.org/book,
Institute for Advanced Study.