References

  1. Mario Alviano, Carmine Dodaro, Wolfgang Faber, Nicola Leone & Francesco Ricca (2013): WASP: A Native ASP Solver Based on Constraint Learning. In: Proceedings of the 12th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2013), LNCS 8148. Springer, pp. 54–66, doi:10.1007/978-3-642-40564-8_6.
  2. Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski & Torsten Schaub (2017): Clingcon: The next generation. Theory and Practice of Logic Programming 17(4), pp. 408–461, doi:10.1017/S1471068417000138.
  3. Aysu Bogatarkan & Esra Erdem (2020): Explanation Generation for Multi-Modal Multi-Agent Path Finding with Optimal Resource Utilization using Answer Set Programming. Theory and Practice of Logic Programming 20(6), pp. 974–989, doi:10.1017/S1471068420000320.
  4. Piero A. Bonatti (1996): Sequent Calculi for Default and Autoepistemic Logics. In: Proceedings of the 5th International Conference on Theorem Proving with Analytic Tableaux and Related Methods (TABLEAUX 1996), LNCS 1071. Springer, pp. 127–142, doi:10.1007/3-540-61208-4_9.
  5. Pedro Cabalar, Jorge Fandinno & Brais Muñiz (2020): A System for Explainable Answer Set Programming. In: Technical Communications of the 36th International Conference on Logic Programming (ICLP 2020), EPTCS 325, pp. 124–136, doi:10.4204/EPTCS.325.19.
  6. Carlos Viegas Damásio, João Moura Pires & Anastasia Analyti (2015): Unifying Justifications and Debugging for Answer-Set Programs. In: Technical Communications of the 31st International Conference on Logic Programming (ICLP 2015), CEUR Workshop Proceedings 1433. CEUR-WS.org. Available at ceur-ws.org/Vol-1433/tc_84.pdf.
  7. Carmine Dodaro, Philip Gasteiger, Benjamin Musitsch, Francesco Ricca & Kostyantyn M. Shchekotykhin (2015): Interactive Debugging of Non-ground ASP Programs. In: Proceedings of 13th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2015), LNCS 9345. Springer, pp. 279–293, doi:10.1007/978-3-319-23264-5_24.
  8. Thomas Eiter, Michael Fink, Giovambattista Ianni, Thomas Krennwallner, Christoph Redl & Peter Schüller (2016): A model building framework for answer set programming with external computations. Theory and Practice of Logic Programming 16(4), pp. 418–464, doi:10.1017/S1471068415000113.
  9. Thomas Eiter & Tobias Geibinger (2023): Explaining Answer-Set Programs with Abstract Constraint Atoms. In: Proceedings of the 32nd International Joint Conference on Artificial Intelligence (IJCAI 2023, to appear).
  10. Thomas Eiter, Tobias Geibinger, Nelson Higuera Ruiz & Johannes Oetsch (2023): A Logic-based Approach to Contrastive Explainability for Neurosymbolic Visual Question Answering. In: Proceedings of the 32rd International Joint Conference on Artificial Intelligence (IJCAI 2023, to appear).
  11. Thomas Eiter, Georg Gottlob & Nicola Leone (1997): Abduction from Logic Programs: Semantics and Complexity. Theoretical Computer Science 189(1-2), pp. 129–177, doi:10.1016/S0304-3975(96)00179-X.
  12. Thomas Eiter, Giovambattista Ianni & Thomas Krennwallner (2009): Answer Set Programming: A Primer. In: Reasoning Web. Springer, pp. 40–110, doi:10.1007/978-3-642-03754-2_2.
  13. Esra Erdem, Michael Gelfond & Nicola Leone (2016): Applications of Answer Set Programming. AI Magazine 37(3), pp. 53–68, doi:10.1609/aimag.v37i3.2678.
  14. Wolfgang Faber, Nicola Leone & Gerald Pfeifer (2004): Recursive Aggregates in Disjunctive Logic Programs: Semantics and Complexity. In: Proceedings of the 9th European Conference on Logics in Artificial Intelligence (JELIA 2004), LNCS 3229. Springer, pp. 200–212, doi:10.1007/978-3-540-30227-8_19.
  15. Andreas Falkner, Gerhard Friedrich, Konstantin Schekotihin, Richard Taupe & Erich C. Teppan (2018): Industrial Applications of Answer Set Programming. KI 32(2), pp. 165–176, doi:10.1007/s13218-018-0548-6.
  16. Jorge Fandinno (2016): Deriving conclusions from non-monotonic cause-effect relations. Theory and Practice of Logic Programming 16(5-6), pp. 670–687, doi:10.1017/S1471068416000466.
  17. Jorge Fandinno & Claudia Schulz (2019): Answering the “why” in answer set programming – A survey of explanation approaches. Theory and Practice of Logic Programming 19(2), pp. 114–203, doi:10.1017/S1471068418000534.
  18. Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub & Philipp Wanko (2016): Theory Solving Made Easy with Clingo 5. In: Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016), OASIcs 52. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 2:1–2:15, doi:10.4230/OASIcs.ICLP.2016.2.
  19. Martin Gebser, Roland Kaminski, Benjamin Kaufmann & Torsten Schaub (2013): Answer Set Solving in Practice. Springer, doi:10.1007/978-3-031-01561-8.
  20. Martin Gebser, Roland Kaminski, Benjamin Kaufmann & Torsten Schaub (2014): Clingo = ASP + Control: Preliminary Report. CoRR abs/1405.3694. Available at arxiv.org/abs/1405.3694.
  21. Martin Gebser, Jörg Pührer, Torsten Schaub & Hans Tompits (2008): A Meta-Programming Technique for Debugging Answer-Set Programs. In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI 2008). AAAI Press, pp. 448–453. Available at www.aaai.org/Library/AAAI/2008/aaai08-071.php.
  22. Joohyung Lee & Yi Wang (2016): Weighted Rules under the Stable Model Semantics. In: Proceedings of the 15th International Conference on Principles of Knowledge Representation and Reasoning (KR 2016). AAAI Press, pp. 145–154. Available at www.aaai.org/ocs/index.php/KR/KR16/paper/view/12901.
  23. Peter Lipton (1990): Contrastive Explanation. Royal Institute of Philosophy Supplement 27, pp. 247–266, doi:10.1017/S1358246100005130.
  24. Victor W. Marek & Miroslaw Truszczynski (2004): Logic Programs with Abstract Constraint Atoms. In: Proceedings of the 19th National Conference on Artificial Intelligence (AAAI 2004). AAAI Press / The MIT Press, pp. 86–91. Available at www.aaai.org/Library/AAAI/2004/aaai04-014.php.
  25. Joao Marques-Silva (2023): Logic-Based Explainability in Machine Learning. In: Leopoldo Bertossi & Guohui Xiao: Reasoning Web. Causality, Explanations and Declarative Knowledge. Springer Nature Switzerland, Cham, pp. 24–104, doi:10.1007/978-3-031-31414-8_2.
  26. Tim Miller (2019): Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence 267, pp. 1–38, doi:10.1016/j.artint.2018.07.007.
  27. Johannes Oetsch, Jörg Pührer & Hans Tompits (2010): Catching the Ouroboros: On debugging non-ground answer-set programs. Theory and Practice of Logic Programming 10(4-6), pp. 513–529, doi:10.1017/S1471068410000256.
  28. Johannes Oetsch, Jörg Pührer & Hans Tompits (2018): Stepwise debugging of answer-set programs. Theory and Practice of Logic Programming 18(1), pp. 30–80, doi:10.1017/S1471068417000217.
  29. David Pearce (2006): Equilibrium logic. Annals of Mathematics and Artificial Intelligence 47, pp. 3–41, doi:10.1007/s10472-006-9028-z.
  30. David Pearce, Inman P. de Guzmán & Agustín Valverde (2000): A Tableau Calculus for Equilibrium Entailment. In: Proceedings of the 9th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2000), LNCS 1847. Springer, pp. 352–367, doi:10.1007/10722086_28.
  31. David Pearce & Agustín Valverde (2001): Abduction in equilibrium logic. In: Proceeding of the 1st International Answer Set Programming Workshop (ASP 2001). Available at http://www.cs.nmsu.edu/%7Etson/ASP2001/23.ps.
  32. Enrico Pontelli, Tran Cao Son & Omar Elkhatib (2009): Justifications for logic programs under answer set semantics. Theory and Practice of Logic Programming 9(1), pp. 1–56, doi:10.1017/S1471068408003633.
  33. Zeynep G. Saribatur, Thomas Eiter & Peter Schüller (2021): Abstraction for non-ground answer set programs. Artificial Intelligence 300, pp. 103563, doi:10.1016/j.artint.2021.103563.
  34. Ly Ly T. Trieu, Tran Cao Son & Marcello Balduccini (2021): exp(ASPc) : Explaining ASP Programs with Choice Atoms and Constraint Rules. In: Technical Communications of the 37th International Conference on Logic Programming (ICLP 2021), EPTCS 345, pp. 155–161, doi:10.4204/EPTCS.345.28.
  35. Ly Ly T. Trieu, Tran Cao Son & Marcello Balduccini (2022): xASP: An Explanation Generation System for Answer Set Programming. In: Proceddings of the 16th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2022), LNCS 13416. Springer, pp. 363–369, doi:10.1007/978-3-031-15707-3_28.
  36. Carlos Viegas Damásio, Anastasia Analyti & Grigoris Antoniou (2013): Justifications for Logic Programming. In: Proceedings of the 12th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2013), LNCS 8148. Springer, pp. 530–542, doi:10.1007/978-3-642-40564-8_53.
  37. Yisong Wang, Thomas Eiter, Yuanlin Zhang & Fangzhen Lin (2022): Witnesses for Answer Sets of Logic Programs. ACM Transactions on Computational Logic, doi:10.1145/3568955.
  38. Zhun Yang, Adam Ishay & Joohyung Lee (2020): NeurASP: Embracing neural networks into answer set programming. In: Proceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI 2020), pp. 1755–1762, doi:10.24963/ijcai.2020/243.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org