1. O. Arieli & A. Avron (1994): Logical Bilattices and Inconsistent Data. In: Proceedings of the Ninth Annual IEEE Symposium on Logic in Computer Science, pp. 468–476, doi:10.1109/LICS.1994.316044.
  2. O. Arieli & A. Avron (2000): Bilattices and Paraconsistency, pp. 11–28. Research Studies Press.
  3. Ofer Arieli & Arnon Avron (1996): Reasoning with Logical Bilattices. Journal of Logic, Language and Information 5, pp. 25–63, doi:10.1007/BF00215626.
  4. Ofer Arieli & Arnon Avron (1998): The Value of the Four Values. Artificial Intelligence 102(1), pp. 97–141, doi:10.1016/S0004-3702(98)00032-0.
  5. Ofer Arieli & Marc Denecker (2003): Reducing Preferential Paraconsistent Reasoning to Classical Entailment. Journal of Logic and Computation 13(4), pp. 557–580, doi:10.1093/logcom/13.4.557.
  6. Arnon Avron (1991): Natural 3-Valued Logics–Characterization and Proof Theory. Journal of Symbolic Logic 56(1), pp. 276–294, doi:10.2307/2274919.
  7. Arnon Avron (1999): On The Expressive Power of Three-Valued and Four-Valued Languages. Journal of Logic and Computation 9, pp. 977–994, doi:10.1093/logcom/9.6.977.
  8. Arnon Avron (2003): Classical Gentzen-Type Methods in Propositional Many-Valued Logics. In: Melvin Fitting & Ewa Orłowska: Beyond Two: Theory and Applications in Multiple-Valued Logics. Springer, pp. 117–155, doi:10.1007/978-3-7908-1769-0_5.
  9. Nuel D. Belnap (1977): How a Computer Should Think. In: Contemporary Aspects of Philosophy. Oriel Press, pp. 30–55.
  10. Nuel D. Belnap (1977): A Useful Four-Valued Logic. In: J. Michael Dunn & George Epstein: Modern Uses of Multiple-Valued Logic, Episteme 2. Springer, pp. 5–37, doi:10.1007/978-94-010-1161-7_2.
  11. Philippe Besnard, Torsten Schaub, Hans Tompits & Stefan Woltran (2005): Representing Paraconsistent Reasoning via Quantified Propositional Logic. In: Leopoldo E. Bertossi, Anthony Hunter & Torsten Schaub: Inconsistency Tolerance, Lecture Notes in Computer Science 3300. Springer, pp. 84–118, doi:10.1007/978-3-540-30597-2_4.
  12. Olaf Beyersdorff, Arne Meier, Michael Thomas & Heribert Vollmer (2012): The Complexity of Reasoning for Fragments of Default Logic. Journal of Logic and Computation 22(3), pp. 587–604, doi:10.1093/ logcom/exq061.
  13. Jean-Yves Béziau (1999): A Sequent Calculus forŁ ukasiewicz's Three-Valued Logic Based on Suszko's Bivalent Semantics. Bulletin of the Section of Logic 28(2), pp. 89–97.
  14. Mihail Bogojeski & Hans Tompits (2020): On Sequent-Type Rejection Calculi for Many-Valued Logics. In: Mariusz Urbański, Tomasz Skura & PawełŁupkowski: Reasoning: Games, Cognition, Logic. College Publications, pp. 193–207, doi:10.1007/978-3-030-20528-7_13.
  15. Piero A. Bonatti & Nicola Olivetti (2002): Sequent Calculi for Propositional Nonmonotonic Logics. ACM Transactions on Computational Logic 3(2), pp. 226–278, doi:10.1145/505372.505374.
  16. Uwe Egly & Hans Tompits (2001): Proof-Complexity Results for Nonmonotonic Reasoning. ACM Transactions on Computational Logic 2(3), pp. 340–387, doi:10.1145/377978.377987.
  17. Melvin Fitting (1989): Negation as Refutation. In: Proceedings of the Fourth Annual Symposium on Logic in Computer Science (LICS '89). IEEE Computer Society, pp. 63–70, doi:10.1109/LICS.1989.39159.
  18. Melvin Fitting (1990): Bilattices in Logic Programming. In: Proceedings of the Twentieth International Symposium on Multiple-Valued Logic (ISMVL 1990), pp. 238–246, doi:10.1109/ISMVL.1990.122627.
  19. Gerhard Gentzen (1935): Untersuchungen über das logische Schließen. I. Mathematische Zeitschrift 39, pp. 176–210, doi:10.1007/BF01201353.
  20. Matthew L. Ginsberg (1988): Multivalued logics: A Uniform Approach to Reasoning in Artificial Intelligence. Computational Intelligence 4(3), pp. 265–316, doi:10.1111/j.1467-8640.1988.tb00280.x.
  21. Jan Łukasiewicz (1939): O sylogistyce Arystotelesa. Sprawozdania z Czynno\'sci i Posiedzeń Polskiej Akademii Umiejetno\'sci 44, doi:10.2307/2267863.
  22. John McCarthy (1980): Circumscription – A Form of Non-Monotonic Reasoning. Artificial Intelligence 13(1–2), pp. 27–39, doi:10.1016/0004-3702(80)90011-9.
  23. Robert C. Moore (1985): Semantical Considerations on Nonmonotonic Logic. Artificial Intelligence 25(1), pp. 75–94, doi:10.1016/0004-3702(85)90042-6.
  24. Graham Priest (1979): The Logic of Paradox. Journal of Philosophical Logic 8(1), pp. 219–241, doi:10.1007/BF00258428.
  25. Graham Priest (1991): Minimally Inconsistent LP. Studia Logica 50(2), pp. 321–331, doi:10.1007/ BF00370190.
  26. Raymond Reiter (1980): A Logic for Default Reasoning. Artificial Intelligence 13(1–2), pp. 81–132, doi:10.1016/0004-3702(80)90014-4.
  27. George Sebastian Rousseau (1967): Sequents in Many Valued Logic I. Fundamenta Mathematicae 60, pp. 23–33, doi:10.4064/fm-67-1-125-131.
  28. Richard Zach (1993): Proof Theory of Finite-Valued Logics. Technische Universität Wien, Institut für Computersprachen.

Comments and questions to:
For website issues: