1. Samson Abramsky, Radha Jagadeesan & Pasquale Malacaria (2000): Full Abstraction for PCF. Inf. Comput. 163(2), pp. 409–470, doi:10.1006/inco.2000.2930.
  2. Samson Abramsky & Achim Jung (1994): Domain theory. Handbook of logic in computer science 3, pp. 1–168.
  3. Samson Abramsky & Guy McCusker (1996): Linearity, Sharing and State: a fully abstract game semantics for Idealized Algol with active expressions. Electr. Notes Theor. Comput. Sci. 3, pp. 2–14, doi:10.1016/S1571-0661(05)80398-6.
  4. Samson Abramsky & Guy McCusker (1999): Game semantics. In: Computational logic. Springer, pp. 1–55, doi:10.1007/978-3-642-58622-4_1.
  5. Samson Abramsky (1997): Semantics of interaction: an introduction to game semantics. In: Semantics and Logics of Computation, pp. 1–33, doi:10.1017/CBO9780511526619.002.
  6. Marco Baroni, Georgiana Dinu & Germán Kruszewski (2014): Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA, Volume 1: Long Papers, pp. 238–247. Available at
  7. Y. Bengio, P. Simard & P. Frasconi (1994): Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks 5(2), pp. 157–166, doi:10.1109/72.279181.
  8. Yoshua Bengio, Réjean Ducharme, Pascal Vincent & Christian Jauvin (2003): A neural probabilistic language model. Journal of machine learning research 3(Feb), pp. 1137–1155. Available at
  9. Peter F. Brown, Stephen Della Pietra, Vincent J. Della Pietra, Jennifer C. Lai & Robert L. Mercer (1992): An Estimate of an Upper Bound for the Entropy of English. Computational Linguistics 18(1), pp. 31–40.
  10. Aylin Caliskan, Joanna J. Bryson & Arvind Narayanan (2017): Semantics derived automatically from language corpora contain human-like biases. Science 356(6334), pp. 183–186, doi:10.1126/science.aal4230.
  11. Koen Claessen & John Hughes (2000): QuickCheck: a lightweight tool for random testing of Haskell programs. In: Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP '00), Montreal, Canada, September 18-21, 2000., pp. 268–279, doi:10.1145/351240.351266.
  12. Wim De Mulder, Steven Bethard & Marie-Francine Moens (2015): A Survey on the Application of Recurrent Neural Networks to Statistical Language Modeling. Comput. Speech Lang. 30(1), pp. 61–98, doi:10.1016/j.csl.2014.09.005.
  13. Yuchen Fan, Yao Qian, Feng-Long Xie & Frank K Soong (2014): TTS synthesis with bidirectional LSTM based recurrent neural networks.. In: Fifteenth Annual Conference of the International Speech Communication Association, pp. 1964–1968.
  14. Nissim Francez, C. A. R. Hoare, Daniel J. Lehmann & Willem P. de Roever (1979): Semantics of Nondeterminism, Concurrency, and Communication. J. Comput. Syst. Sci. 19(3), pp. 290–308, doi:10.1016/0022-0000(79)90006-0.
  15. Murdoch Gabbay & Dan R. Ghica (2012): Game Semantics in the Nominal Model. Electr. Notes Theor. Comput. Sci. 286, pp. 173–189, doi:10.1016/j.entcs.2012.08.012.
  16. Dan R. Ghica (2009): Applications of Game Semantics: From Program Analysis to Hardware Synthesis. In: Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science, LICS 2009, 11-14 August 2009, Los Angeles, CA, USA, pp. 17–26, doi:10.1109/LICS.2009.26.
  17. Dan R. Ghica & Adam Bakewell (2009): Clipping: A Semantics-Directed Syntactic Approximation. In: Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science, LICS 2009, 11-14 August 2009, Los Angeles, CA, USA, pp. 189–198, doi:10.1109/LICS.2009.25.
  18. Dan R. Ghica & Guy McCusker (2003): The regular-language semantics of second-order idealized A_\voidb@x LGOL. Theor. Comput. Sci. 309(1-3), pp. 469–502, doi:10.1016/S0304-3975(03)00315-3.
  19. Dan R. Ghica & Andrzej S. Murawski (2006): Compositional Model Extraction for Higher-Order Concurrent Programs. In: Tools and Algorithms for the Construction and Analysis of Systems, 12th International Conference, TACAS 2006 Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2006, Vienna, Austria, March 25 - April 2, 2006, Proceedings, pp. 303–317, doi:10.1007/11691372_20.
  20. Dan R. Ghica & Andrzej S. Murawski (2008): Angelic semantics of fine-grained concurrency. Ann. Pure Appl. Logic 151(2-3), pp. 89–114, doi:10.1016/j.apal.2007.10.005.
  21. Dan R. Ghica, Andrzej S. Murawski & C.-H. Luke Ong (2006): Syntactic control of concurrency. Theor. Comput. Sci. 350(2-3), pp. 234–251, doi:10.1016/j.tcs.2005.10.032.
  22. Dan R. Ghica & Nikos Tzevelekos (2012): A System-Level Game Semantics. Electr. Notes Theor. Comput. Sci. 286, pp. 191–211, doi:10.1016/j.entcs.2012.08.013.
  23. A. Graves, A. r. Mohamed & G. Hinton (2013): Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645–6649, doi:10.1109/ICASSP.2013.6638947.
  24. Edward Grefenstette, Georgiana Dinu, Yao-Zhong Zhang, Mehrnoosh Sadrzadeh & Marco Baroni (2013): Multi-Step Regression Learning for Compositional Distributional Semantics. In: Proceedings of the 10th International Conference on Computational Semantics, IWCS 2013, March 19-22, 2013, University of Potsdam, Potsdam, Germany, pp. 131–142. Available at
  25. Mark Harman, S. Afshin Mansouri & Yuanyuan Zhang (2012): Search-based software engineering: Trends, techniques and applications. ACM Comput. Surv. 45(1), pp. 11:1–11:61, doi:10.1145/2379776.2379787.
  26. Russell Harmer & Guy McCusker (1999): A Fully Abstract Game Semantics for Finite Nondeterminism. In: 14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999, pp. 422–430, doi:10.1109/LICS.1999.782637.
  27. Sepp Hochreiter & Jürgen Schmidhuber (1997): Long Short-Term Memory. Neural Computation 9(8), pp. 1735–1780, doi:10.1162/neco.1997.9.8.1735.
  28. J. M. E. Hyland & C.-H. Luke Ong (2000): On Full Abstraction for PCF: I, II, and III. Inf. Comput. 163(2), pp. 285–408, doi:10.1006/inco.2000.2917.
  29. Armand Joulin & Tomas Mikolov (2015): Inferring algorithmic patterns with stack-augmented recurrent nets. In: Advances in neural information processing systems, pp. 190–198.
  30. Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer & Yonghui Wu (2016): Exploring the limits of language modeling. Available at
  31. Thomas K Landauer (2006): Latent semantic analysis. Wiley Online Library, doi:10.1002/0470018860.s00561.
  32. Zachary C Lipton, John Berkowitz & Charles Elkan (2015): A critical review of recurrent neural networks for sequence learning. Available at
  33. Markos Markou & Sameer Singh (2003): Novelty detection: a review - part 1: statistical approaches. Signal Processing 83(12), pp. 2481–2497, doi:10.1016/j.sigpro.2003.07.018.
  34. Markos Markou & Sameer Singh (2003): Novelty detection: a review - part 2: : neural network based approaches. Signal Processing 83(12), pp. 2499–2521, doi:10.1016/j.sigpro.2003.07.019.
  35. T. Mikolov & G. Zweig (2012): Context dependent recurrent neural network language model. In: 2012 IEEE Spoken Language Technology Workshop (SLT), pp. 234–239, doi:10.1109/SLT.2012.6424228.
  36. Andrzej S. Murawski (2005): About the undecidability of program equivalence in finitary languages with state. ACM Trans. Comput. Log. 6(4), pp. 701–726, doi:10.1145/1094622.1094626.
  37. Andrzej S. Murawski & Igor Walukiewicz (2008): Third-order Idealized Algol with iteration is decidable. Theor. Comput. Sci. 390(2-3), pp. 214–229, doi:10.1016/j.tcs.2007.09.022.
  38. Peter O'Hearn & Robert Tennent (2013): ALGOL-like Languages. Springer Science & Business Media.
  39. Christopher Olah: Understanding LSTM Networks. Available at
  40. C.-H. Luke Ong (2002): Observational Equivalence of 3rd-Order Idealized Algol is Decidable. In: 17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings, pp. 245–256, doi:10.1109/LICS.2002.1029833.
  41. Andrew M. Pitts (2000): Operational Semantics and Program Equivalence. In: Applied Semantics, International Summer School, APPSEM 2000, Caminha, Portugal, September 9-15, 2000, Advanced Lectures, pp. 378–412, doi:10.1007/3-540-45699-6_8.
  42. Andrew M Pitts (2013): Nominal sets: Names and symmetry in computer science. Cambridge University Press, doi:10.1017/CBO9781139084673.
  43. Gordon D. Plotkin (1975): Call-by-Name, Call-by-Value and the lambda-Calculus. Theor. Comput. Sci. 1(2), pp. 125–159, doi:10.1016/0304-3975(75)90017-1.
  44. Gordon D. Plotkin (1977): LCF Considered as a Programming Language. Theor. Comput. Sci. 5(3), pp. 223–255, doi:10.1016/0304-3975(77)90044-5.
  45. John C. Reynolds (1997): The Essence of Algol, pp. 67–88. Birkhäuser Boston, Boston, MA, doi:10.1007/978-1-4612-4118-8_4.
  46. Anton Maximilian Schäfer & Hans-Georg Zimmermann (2007): Recurrent neural nets are universal approximators. International Journal of Neural Systems 17(04), pp. 253–263, doi:10.1142/S0129065707001111.
  47. Hava T Siegelmann & Eduardo D Sontag (1991): Turing computability with neural nets. Applied Mathematics Letters 4(6), pp. 77–80, doi:10.1016/0893-9659(91)90080-F.
  48. R. L. Stratonovich (1960): Conditional Markov Processes. Theory of Probability & Its Applications 5(2), pp. 156–178, doi:10.1137/1105015.
  49. Ilya Sutskever, Oriol Vinyals & Quoc V Le (2014): Sequence to sequence learning with neural networks. In: Advances in neural information processing systems, pp. 3104–3112.
  50. Robert D. Tennent (1976): The denotational semantics of programming languages. Communications of the ACM 19(8), pp. 437–453, doi:10.1145/360303.360308.
  51. A. Viterbi (1967): Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory 13(2), pp. 260–269, doi:10.1109/TIT.1967.1054010.
  52. Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao & Klaus Macherey (2016): Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv preprint arXiv:1609.08144. Available at
  53. Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C Courville, Ruslan Salakhutdinov, Richard S Zemel & Yoshua Bengio (2015): Show, Attend and Tell: Neural Image Caption Generation with Visual Attention.. In: ICML 14, pp. 77–81. Available at

Comments and questions to:
For website issues: