1. R. Alur, C. Courcoubetis, T. A. Henzinger & P. H. Ho (1992): Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems. In: R. L. Grossman, A. Nerode, A. P. Ravn & H. Richel: Hybrid Systems, LNCS. Springer, pp. 209–229, doi:10.1007/3-540-57318-6_30.
  2. R. Alur & D. L. Dill (1994): A Theory of Timed Automata. Theoret. Comput. Sci. 126(2), pp. 183–235, doi:10.1016/0304-3975(94)90010-8.
  3. E. Bartocci, F. Corradini, E. Merelli & L. Tesei (2009): Model Checking Biological Oscillators. Electronic Notes in Theoretical Computer Science 299(1), pp. 41–58, doi:10.1016/j.entcs.2009.02.004.
  4. T. Dang (2010): Model-based testing of hybrid systems. Model-Based Testing for Embedded Systems. CRC Press, doi:10.1201/b11321-15.
  5. T. Dang & T. Nahhal (2009): Coverage-guided test generation for continuous and hybrid systems. Form. Methods Syst. Des. 34(2), pp. 183–213, doi:10.1007/s10703-009-0066-0.
  6. P. Dluhos, L. Brim & D. Safránek (2012): On Expressing and Monitoring Oscillatory Dynamics. In: HSB 2012, doi:10.4204/EPTCS.92.6.
  7. M. M. Donahue, G. Buzzard & A. E. Rundell (2009): Robust parameter identification with adaptive sparse grid-based optimization for nonlinear systems biology models. In: ACC Conference, doi:10.1109/ACC.2009.5160512.
  8. R. Ghaemi & D. Del Vecchio (2007): Evaluating the robustness of a biochemical network model. In: Decision and Control, 2007 46th IEEE Conference on, pp. 615–620, doi:10.1109/CDC.2007.4434348.
  9. R. Ghaemi, J. Sun, P. A. Iglesias & D. Del Vecchio (2009): A Method for determining the robustness of bio-molecular oscillator models. BMC Systems Biology 3(95), doi:10.1186/1752-0509-3-95.
  10. J. Kim, D. G. Bates, I. Postlethwaite, L. Ma & P. A. Iglesias (2006): Robustness analysis of biochemical network models. IEE Proc. Systems Biology 153(2), pp. 96–104, doi:10.1049/ip-syb:20050024.
  11. M.T. Laub & W.F. Loomis (1998): A molecular network that produces spontaneous oscillations in excitable cells of Dictyostelium. Molecular biology of the cell 9(12), pp. 3521–3532, doi:10.1091/mbc.9.12.3521.
  12. R. Motwani & P. Raghavan (1995): Randomized algorithms. Cambridge University Press, New York, NY, USA, doi:10.1017/CBO9780511814075.
  13. Y. Nonaka, H. Ono, K. Sadakane & M. Yamashita (2010): The hitting and cover times of Metropolis walks. Theoret. Comput. Sci. 411(16‚Äď18), pp. 1889 – 1894, doi:10.1016/j.tcs.2010.01.032.
  14. Kuznetsov Y. (2004): Elements of Applied Bifurcation Theory. Springer.

Comments and questions to:
For website issues: