1. DREAM6 Estimation of Model Parameters Challenge | The Dream Project.
  2. Luca Bortolussi (2011): Hybrid Limits of Continuous Time Markov Chains. In: Quantitative Evaluation of Systems (QEST), 2011 Eighth International Conference on, pp. 3 –12, doi:10.1109/QEST.2011.10.
  3. Adrian W. Bowman & Adelchi Azzalini: Bayesian Data Analysis. Oxford University Press.
  4. Clive G. Bowsher (2011): Automated analysis of information processing, kinetic independence and modular architecture in biochemical networks using MIDIA 27(4), pp. 584–586, doi:10.1093/bioinformatics/btq694.
  5. Kamil Erguler & Michael P. H. Stumpf (2011): Practical limits for reverse engineering of dynamical systems: a statistical analysis of sensitivity and parameter inferability in systems biology models. Mol. BioSyst. 7, pp. 1593–1602, doi:10.1039/C0MB00107D.
  6. Andrew Gelman, Christian Robert, Nicolas Chopin & Judith Rousseau (1995): Bayesian Data Analysis.
  7. Ryan N Gutenkunst, Joshua J Waterfall, Fergal P Casey, Kevin S Brown, Christopher R Myers & James P Sethna (2007): Universally Sloppy Parameter Sensitivities in Systems Biology Models. PLoS Comput Biol 3(10), pp. 1871–1878, doi:10.1371/journal.pcbi.0030189.
  8. Stefan Hoops, Sven Sahle, Ralph Gauges, Christine Lee, Jürgen Pahle, Natalia Simus, Mudita Singhal, Liang Xu, Pedro Mendes & Ursula Kummer (2006): COPASI—a COmplex PAthway SImulator. Bioinformatics 22(24), pp. 3067–3074, doi:10.1093/bioinformatics/btl485.
  9. Hans-Michael Kaltenbach & Jorg Stelling (2012): Modular Analysis of Biological Networks. In: Igor I. Goryanin & Andrew B. Goryachev: Advances in Systems Biology, Advances in Experimental Medicine and Biology 736. Springer New York, pp. 3–17, doi:10.1007/978-1-4419-7210-1_1.
  10. S. Kirkpatrick, C. D. Gelatt & M. P. Vecchi (1983): Optimization by Simulated Annealing. Science 220(4598), pp. 671–680, doi:10.1126/science.220.4598.671.
  11. Carl Edward Rasmussen & Christopher K. I. Williams: Gaussian Processes for Machine Learning. MIT Press.
  12. Philipp Thomas, Arthur Straube & Ramon Grima (2012): The slow-scale linear noise approximation: an accurate, reduced stochastic description of biochemical networks under timescale separation conditions. BMC Systems Biology 6(1), pp. 39, doi:10.1186/1752-0509-6-39.
  13. N. G. Van Kampen (2007): Stochastic Processes in Physics and Chemistry. Elsevier Science & Technology.
  14. Vladislav Vyshemirsky & Mark A. Girolami (2008): Bayesian ranking of biochemical system models. Bioinformatics 24(6), pp. 833–839, doi:10.1093/bioinformatics/btm607.

Comments and questions to:
For website issues: