1. F. Bagnoli, P. Liò & L. Sguanci (2007): Risk perception in epidemic modeling. Physical Review E 76(6), pp. 061904, doi:10.1103/PhysRevE.76.061904.
  2. E. Bartocci, P. Liò, M. Merelli & N. Paoletti (2012): Multiple Verification in Complex Biological Systems: the Bone Remodelling Case Study. Transactions on Computational Systems Biology. To appear.
  3. G. Batt, D. Ropers, H. De Jong, J. Geiselmann, M. Page & D. Schneider (2005): Qualitative analysis and verification of hybrid models of genetic regulatory networks: Nutritional stress response in Escherichia coli. Hybrid Systems: Computation and Control, pp. 134–150, doi:10.1007/978-3-540-31954-2_9.
  4. A. Bemporad & M. Morari (1999): Control of systems integrating logic, dynamics, and constraints. Automatica 35, pp. 407–428, doi:10.1016/S0005-1098(98)00178-2.
  5. L. Bortolussi, V. Galpin, J. Hillston & M. Tribastone (2010): Hybrid semantics for PEPA. In: Quantitative Evaluation of Systems (QEST), 2010 Seventh International Conference on the. IEEE, pp. 181–190, doi:10.1109/QEST.2010.31.
  6. L. Bortolussi & A. Policriti (2009): Hybrid Dynamics of Stochastic π-calculus. Mathematics in Computer Science 2(3), pp. 465–491, doi:10.1007/s11786-008-0065-3.
  7. L. Cardelli (2008): From processes to odes by chemistry. In: Fifth Ifip International Conference On Theoretical Computer Science–Tcs 2008. Springer, pp. 261–281, doi:10.1007/978-0-387-09680-3_18.
  8. L. Cardelli & G. Zavattaro (2008): On the computational power of biochemistry. Algebraic Biology, pp. 65–80, doi:10.1007/978-3-540-85101-1_6.
  9. V. Galpin, L. Bortolussi & J. Hillston (2009): HYPE: a process algebra for compositional flows and emergent behaviour. CONCUR 2009-Concurrency Theory, pp. 305–320, doi:10.1007/978-3-642-04081-8_21.
  10. R. Grosu, G. Batt, F. Fenton, J. Glimm, C. Le Guernic, S. Smolka & E. Bartocci (2011): From cardiac cells to genetic regulatory networks. In: Computer Aided Verification. Springer, pp. 396–411, doi:10.1007/978-3-642-22110-1_31.
  11. T.A. Henzinger (1996): The theory of hybrid automata. In: Logic in Computer Science, 1996. LICS'96. Proceedings., Eleventh Annual IEEE Symposium on. IEEE, pp. 278–292, doi:10.1109/LICS.1996.561342.
  12. W.O. Kermack & A.G. McKendrick (1932): Contributions to the mathematical theory of epidemics. II. The problem of endemicity. Proceedings of the Royal society of London. Series A 138(834), pp. 55–83, doi:10.1098/rspa.1932.0171.
  13. M. Kvasnica, P. Grieder & M. Baoti\'c (2004): Multi-Parametric Toolbox (MPT). Available at
  14. M. Lapin, L. Mikeev & V. Wolf (2011): SHAVE: stochastic hybrid analysis of markov population models. In: Proceedings of the 14th international conference on Hybrid systems: computation and control. ACM, pp. 311–312, doi:10.1145/1967701.1967746.
  15. P. Liò, N. Paoletti, M.A. Moni, K. Atwell, M. Merelli & Viceconti M. (2012): Modelling osteomyelitis. BMC Bioinformatics, supplement on NETTAB 2011 workshop. To appear.
  16. J. Lunze & F. Lamnabhi-Lagarrigue (2009): Handbook of hybrid systems control: theory, tools, applications. Cambridge University Press.
  17. R. Norman & C. Shankland (2003): Developing the use of process algebra in the derivation and analysis of mathematical models of infectious disease. Computer Aided Systems Theory-EUROCAST 2003, pp. 404–414, doi:10.1007/978-3-540-45210-2_37.
  18. N. Paoletti, P. Liò, E. Merelli & M. Viceconti (2011): Osteoporosis: a multiscale modeling viewpoint. In: Proceedings of the 9th International Conference on Computational Methods in Systems Biology (CMSB '11), pp. 183–193, doi:10.1145/2037509.2037536.
  19. N. Paoletti, P. Liò, E. Merelli & M. Viceconti (2012): Multi-level Computational Modeling and Quantitative Analysis of Bone Remodeling. IEEE/ACM Transactions on Computational Biology and Bioinformatics 99(PrePrints), doi:10.1109/TCBB.2012.51.
  20. L. Stone, B. Shulgin & Z. Agur (2000): Theoretical examination of the pulse vaccination policy in the SIR epidemic model. Mathematical and Computer Modelling 31(4), pp. 207–215, doi:10.1016/S0895-7177(00)00040-6.
  21. T. Suzuki, N. Bruchovsky & K. Aihara (2010): Piecewise affine systems modelling for optimizing hormone therapy of prostate cancer. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368(1930), pp. 5045–5059, doi:10.1098/rsta.2010.0220.
  22. M. Viceconti (2011): Multiscale Modeling of the Skeletal System. Cambridge University Press, doi:10.1017/CBO9781139049627.

Comments and questions to:
For website issues: