1. Ludwig Arnold (1974): Stochastic differential equations: theory and applications. Wiley-Interscience [John Wiley & Sons], New York. Translated from the German.
  2. Manuela L. Bujorianu & John Lygeros (2006): Toward a general theory of stochastic hybrid systems. In: Stochastic hybrid systems, Lecture Notes in Control and Inform. Sci. 337. Springer, Berlin, pp. 3–30, doi:10.1007/11587392_1.
  3. A Einstein (1905): Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 17(8), pp. 549–560, doi:10.1002/andp.19053220806.
  4. A. F. Filippov (1988): Differential equations with discontinuous righthand sides. Mathematics and its Applications (Soviet Series) 18. Kluwer Academic Publishers Group, Dordrecht. Translated from the Russian.
  5. Desmond J. Higham (2001): An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3), pp. 525–546 (electronic), doi:10.1137/S0036144500378302.
  6. Jianghai Hu, John Lygeros & Shankar Sastry (2000): Towards a Theory of Stochastic Hybrid Systems. N. Lynch and B. Krogh (Eds.): HSCC 2000, LNCS 1790, pp. 160–173.
  7. Kiyosi Ito (1951): On stochastic differential equations. Mem. Amer. Math. Soc. 1951(4), pp. 51.
  8. Rafail Khasminskii (2012): Stochastic stability of differential equations, second edition, Stochastic Modelling and Applied Probability 66. Springer, Heidelberg, doi:10.1007/978-3-642-23280-0. With contributions by G. N. Milstein and M. B. Nevelson.
  9. Peter E. Kloeden & Eckhard Platen (1992): Numerical solution of stochastic differential equations. Applications of Mathematics (New York) 23. Springer-Verlag, Berlin, doi:10.1007/978-3-662-12616-5.
  10. Harold Kushner (1971): Introduction to stochastic control. Holt, Rinehart and Winston, Inc., New York.
  11. Harold J. Kushner (1967): Stochastic stability and control. Mathematics in Science and Engineering, Vol. 33. Academic Press, New York.
  12. C. Le Bris & P.-L. Lions (2008): Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients. Comm. Partial Differential Equations 33(7-9), pp. 1272–1317, doi:10.1080/03605300801970952.
  13. Xuerong Mao & Chenggui Yuan (2006): Stochastic differential equations with Markovian switching. Imperial College Press, London, doi:10.1142/p473.
  14. Gisirō Maruyama (1955): Continuous Markov processes and stochastic equations. Rend. Circ. Mat. Palermo (2) 4, pp. 48–90, doi:10.1007/BF02846028.
  15. Bernt Øksendal (2003): Stochastic differential equations, sixth edition, Universitext. Springer-Verlag, Berlin, doi:10.1007/978-3-642-14394-6. An introduction with applications.
  16. H. Risken (1989): The Fokker-Planck equation, second edition, Springer Series in Synergetics 18. Springer-Verlag, Berlin, doi:10.1007/978-3-642-61544-3. Methods of solution and applications.
  17. R. L. Stratonovich (1966): A new representation for stochastic integrals and equations. SIAM J. Control 4, pp. 362–371, doi:10.1137/0304028.

Comments and questions to:
For website issues: