1. U Alon (2006): An introduction to systems biology: design principles of biological circuits. Chapman and Hall/CRC Press, London.
  2. M. Barenco, D. Tomescu, D. Brewer, R. Callard, J. Stark & M. Hubank (2006): Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biology 7(3), pp. R25, doi:10.1186/gb-2006-7-3-r25.
  3. CM Bishop (2006): Pattern recognition and machine learning. Springer, Berlin.
  4. L Bortolussi & J Hillston (2012): Fluid Model Checking. CONCUR 2012 – Concurrency Theory, pp. 333–347, doi:10.1007/978-3-642-32940-1_24.
  5. MB Elowitz, AJ Levine, ED Siggia & PS Swain (2002): Stochastic gene expression in a single cell. Science 297, pp. 1183–6, doi:10.1126/science.1070919.
  6. NG Van Kampen (1981): Stochastic processes in physics and chemistry. North-Holland, Amsterdam.
  7. N.D. Lawrence, G. Sanguinetti & M. Rattray (2007): Modelling transcriptional regulation using Gaussian processes. In: B Schölkopf, J Platt & T Hoffman: Advances in Neural Information Processing Systems 19, pp. 785–792.
  8. JC Liao, R Boscolo, YL Yang, LM Tran, C Sabatti & VP Roychowdhury (2003): Network component analysis: reconstruction of regulatory signals in biological systems. Proceedings of the National Academy of Sciences 100(26), pp. 15522–15527, doi:10.1073/pnas.2136632100.
  9. A Ocone, AJ Millar & G Sanguinetti (2013): Hybrid regulatory models: a statistically tractable approach to model regulatory network dynamics. Bioinformatics 29(7), pp. 910–6, doi:10.1093/bioinformatics/btt069.
  10. A Ocone & G Sanguinetti (2011): Reconstructing transcription factor activities in hierarchical transcription network motifs.. Bioinformatics 27(20), pp. 2873–9, doi:10.1093/bioinformatics/btr487.
  11. M Opper & D Saad (2001): Advanced mean field methods: theory and practice. The MIT Press, Cambridge, MA.
  12. M Opper & G Sanguinetti (2010): Learning combinatorial transcriptional dynamics from gene expression data.. Bioinformatics 26(13), pp. 1623–9, doi:10.1093/bioinformatics/btq244.
  13. Manfred Opper, Andreas Ruttor & Guido Sanguinetti (2010): Approximate inference in continuous time Gaussian-jump processes. In: John D. Lafferty, Christopher K. I. Williams, John Shawe-Taylor, Richard S. Zemel & Aron Culotta: Advances in Neural Information Processing Systems 23, pp. 1831–1839.
  14. G Pola, ML Bujorianu, J Lygeros & MDD Benedetto (2003): Stochastic hybrid models: An overview. In: Proceedings of the IFAC Conference on Analysis and Design of Hybrid Systems, pp. 45–50.
  15. M Ptashne & A Gann (2002): Genes and signals. Cold Harbor Spring Laboratory Press, New York.
  16. G. Sanguinetti, M. Rattray & N.D. Lawrence (2006): A probabilistic dynamical model for quantitative inference of the regulatory mechanism of transcription. Bioinformatics 22(14), pp. 1753–1759, doi:10.1093/bioinformatics/btl154.
  17. Guido Sanguinetti, Andreas Ruttor, Manfred Opper & C Archambeau (2009): Switching regulatory models of cellular stress response.. Bioinformatics 25(10), pp. 1280–6, doi:10.1093/bioinformatics/btp138.
  18. D Sterratt, B Graham, A Gillies & D Willshaw (2011): Principles of computational modelling in neuroscience. Cambridge University Press, Cambridge, doi:10.1017/CBO9780511975899.
  19. PS Swain, MB Elowitz & ED Siggia (2002): Intrinsic and extrinsic contributions to stochasticity in gene expression. Proceedings of the National Academy of Sciences 99(20), pp. 12795–800, doi:10.1073/pnas.162041399.

Comments and questions to:
For website issues: