1. J. Bradfield & C. Stirling (2006): Modal μ-calculi. In: J. van Benthem, P. Blackburn & F. Wolter: Handbook of Modal Logic. Elsevier, pp. 721–756.
  2. F. Bruse, O. Friedmann & M. Lange (2015): On guarded transformation in the modal μ-calculus. Logic Journal of the IGPL 23(2), pp. 194–216, doi:10.1093/jigpal/jzu030.
  3. C.S. Calude, S. Jain, B. Khoussainov, W. Li & F. Stephan (2017): Deciding parity games in quasipolynomial time. In: H. Hatami, P. McKenzie & V. King: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, (STOC 2017). ACM, pp. 252–263, doi:10.1145/3055399.3055409.
  4. G. D'Agostino & M. Hollenberg: Logical questions concerning the μ-calculus. Journal of Symbolic Logic 65, pp. 310–332, doi:10.1080/11663081.1991.10510772.
  5. G. D'Agostino & G. Lenzi (2006): On modal mu-calculus with explicit interpolants. Journal of Applied Logic 4(3), pp. 256–278, doi:10.1016/j.jal.2005.06.008.
  6. S. Demri, V. Goranko & M. Lange (2016): Temporal Logics in Computer Science: Finite-State Systems. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, doi:10.1017/CBO9781139236119.
  7. E.A. Emerson & C.S. Jutla (1988): The complexity of tree automata and logics of programs (extended abstract). In: Proceedings of the 29th Symposium on the Foundations of Computer Science. IEEE Computer Society Press, pp. 328–337.
  8. E.A. Emerson & C.S. Jutla (1991): Tree automata, mu-calculus and determinacy (extended abstract). In: Proceedings of the 32nd Symposium on the Foundations of Computer Science. IEEE Computer Society Press, pp. 368–377.
  9. S. Enqvist, F. Seifan & Y. Venema (2018): Completeness for the modal μ-calculus: Separating the combinatorics from the dynamics. Theoretical Computer Science 727, pp. 37–100, doi:10.1016/j.tcs.2018.03.001.
  10. G. Fontaine & Y. Venema (2018): Some model theory for the modal mu-calculus: syntactic characterizations of semantic properties. Logical Methods in Computer Science 14(1).
  11. O. Friedmann & M. Lange (2013): Deciding the unguarded modal μ-calculus. Journal of Applied Non-Classical Logics 23(4), pp. 353–371, doi:10.1080/11663081.2013.861181.
  12. E. Grädel, W. Thomas & T. Wilke (2002): Automata, Logic, and Infinite Games. LNCS 2500. Springer.
  13. D. Janin & I. Walukiewicz (1995): Automata for the modal μ-calculus and related results. In: Proceedings of the Twentieth International Symposium on Mathematical Foundations of Computer Science, MFCS'95, LNCS 969. Springer, pp. 552–562.
  14. O. Kupferman & M.Y. Vardi (2005): From Linear Time to Branching Time. ACM Transactions on Computational Logic 6(2), pp. 273–294, doi:10.1145/1055686.1055689.
  15. C. Kupke, J. Marti & Y. Venema (2020): Size matters in the modal μ-calculus. CoRR abs/2010.14430.
  16. C. Kupke & Y. Venema (2008): Coalgebraic Automata Theory: Basic Results. Logical Methods in Computer Science 4(4), doi:10.2168/LMCS-4(4:10)2008.
  17. K. Lehtinen (2015): Disjunctive form and the modal μ alternation hierarchy. In: Proceedings of FICS 2015, EPTCS 191, pp. 117–131, doi:10.4204/EPTCS.191.11.
  18. N. Piterman (2007): From Nondeterministic Büchi and Streett Automata to Deterministic Parity Automata. LMCS 3(3), doi:10.2168/LMCS-3(3:5)2007.
  19. S. Schewe (2009): Tighter Bounds for the Determinisation of Büchi Automata. In: Luca de Alfaro: Proceedings of FOSSACS 2009, LNCS 5504. Springer, pp. 167–181, doi:10.1007/978-3-642-00596-1_13.
  20. C. Stirling: Modal and Temporal Properties of Processes. Texts in Computer Science. Springer-Verlag, doi:10.1007/978-1-4757-3550-5.
  21. M. Y. Vardi (1998): Reasoning about the Past with Two-Way Automata. In: Proceedings of ICALP'98, LNCS 1443. Springer, pp. 628–641, doi:10.1007/BFb0055090.
  22. Y. Venema (2006): Automata and Fixed Point Logic: a Coalgebraic Perspective. Information and Computation 204, pp. 637–678, doi:10.1016/j.ic.2005.06.003.
  23. I. Walukiewicz (2000): Completeness of Kozen's axiomatisation of the propositional μ-calculus. Information and Computation 157, pp. 142–182, doi:10.1006/inco.1999.2836.
  24. T. Wilke (2001): Alternating tree automata, parity games, and modal μ-calculus. Bulletin of the Belgian Mathematical Society 8, pp. 359–391.

Comments and questions to:
For website issues: