1. Johan van Benthem (2006): Modal frame correspondences and fixed-points. Studia Logica 83, pp. 133–155, doi:10.1007/s11225-006-8301-9.
  2. Johan van Benthem & Nick Bezhanishvili: Modern faces of filtration. ILLC Prepublication PP-2019-13.
  3. Facundo Carreiro (2015): Fragments of fixpoint logics. University of Amsterdam.
  4. Facundo Carreiro, Alessandro Facchini, Yde Venema & Fabio Zanasi (2020): The Power of the Weak. ACM Transactions on Computational Logic 21(2), pp. 15:1–15:47, doi:10.1016/S0304-3975(01)00185-2.
  5. Gaëlle Fontaine (2008): Continuous fragment of the mu-calculus. In: International Workshop on Computer Science Logic. Springer, pp. 139–153, doi:10.1007/3-540-49116-3_50.
  6. Robert Goldblatt (1987): Logics of time and computation. Center for the Study of Language and Information.
  7. David Janin & Igor Walukiewicz (1996): On the Expressive Completeness of the Propositional μ-Calculus w.r.t. Monadic Second-Order Logic. In: Proceedings of the Seventh International Conference on Concurrency Theory, CONCUR '96, LNCS 1119, pp. 263–277, doi:10.1007/3-540-61604-7_60.
  8. Stanislav Kikot, Ilya Shapirovsky & Evgeny Zolin (2020): Modal Logics with Transitive Closure: Completeness, Decidability, Filtration. In: Nicola Olivetti, Rineke Verbrugge, Sara Negri & Gabriel Sandu: 13th Conference on Advances in Modal Logic, AiML 2020, Helsinki, Finland, August 24-28, 2020. College Publications, pp. 369–388.
  9. Dexter Kozen (1983): Results on the propositional μ-calculus. Theoretical computer science 27(3), pp. 333–354, doi:10.1016/0304-3975(82)90125-6.
  10. Dexter Kozen & Rohit Parikh (1981): An elementary proof of the completeness of PDL. Theoretical Computer Science 14(1), pp. 113–118, doi:10.1016/0304-3975(81)90019-0.
  11. John Lemmon & Dana Scott (1977): An introduction to modal logic. Blackwell.
  12. Johannes Marti & Yde Venema (2021): Focus-style proof systems and interpolation for the alternation-free μ-calculus.

Comments and questions to:
For website issues: