1. Fausto Barbero (2019): Some observations about generalized quantifiers in logics of imperfect information. The Review of Symbolic Logic, pp. 1–31, doi:10.1017/S1755020319000145.
  2. Peter Cameron & Wilfrid Hodges (2001): Some Combinatorics of Imperfect Information. The Journal of Symbolic Logic 66(2), pp. 673–684, doi:10.2307/2695036.
  3. Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier & Jonni Virtema (2018): Approximation and dependence via multiteam semantics. Annals of Mathematics and Artificial Intelligence 83(3-4), pp. 297–320, doi:10.1007/s10472-017-9568-4.
  4. Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier & Jonni Virtema (2018): Probabilistic team semantics. In: International Symposium on Foundations of Information and Knowledge Systems. Springer, pp. 186–206, doi:10.1007/978-3-319-90050-6_11.
  5. Fredrik Engström (2012): Generalized quantifiers in dependence logic. Journal of Logic, Language and Information 21(3), pp. 299–324, doi:10.1007/s10849-012-9162-4.
  6. Fredrik Engström, Juha Kontinen & Jouko Väänänen (2017): Dependence logic with generalized quantifiers: Axiomatizations. Journal of Computer and System Sciences 88, pp. 90–102, doi:10.1016/j.jcss.2017.03.010.
  7. Pietro Galliani (2011): Sensible Semantics of Imperfect Information. In: Mohua Banerjee & Anil Seth: Logic and Its Applications, Lecture Notes in Computer Science 6521. Springer Berlin / Heidelberg, pp. 79–89, doi:10.1007/978-3-642-18026-2_8.
  8. Pietro Galliani (2012): Inclusion and exclusion dependencies in team semantics: On some logics of imperfect information. Annals of Pure and Applied Logic 163(1), pp. 68 – 84, doi:10.1016/j.apal.2011.08.005.
  9. Pietro Galliani (2015): Upwards closed dependencies in team semantics. Information and Computation 245, pp. 124–135, doi:10.1016/j.ic.2015.06.008.
  10. Pietro Galliani (2016): On Strongly First-Order Dependencies. In: Dependence Logic. Springer, pp. 53–71, doi:10.1007/978-3-319-31803-5_4.
  11. Pietro Galliani (2018): Safe Dependency Atoms and Possibility Operators in Team Semantics. In: Proceedings Ninth International Symposium on Games, Automata, Logics, and Formal Verification, GandALF 2018, Saarbrücken, Germany, 26-28th September 2018., pp. 58–72, doi:10.4204/EPTCS.277.5.
  12. Pietro Galliani (2019): Characterizing downwards closed, strongly first order, relativizable dependencies. The Journal of Symbolic Logic, pp. 1–34, doi:10.1017/jsl.2019.12.
  13. Pietro Galliani & Lauri Hella (2013): Inclusion Logic and Fixed Point Logic. In: Simona Ronchi Della Rocca: Computer Science Logic 2013 (CSL 2013), Leibniz International Proceedings in Informatics (LIPIcs) 23. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 281–295, doi:10.4230/LIPIcs.CSL.2013.281. Available at
  14. Erich Grädel & Jouko Väänänen (2013): Dependence and Independence. Studia Logica 101(2), pp. 399–410, doi:10.1007/s11225-013-9479-2.
  15. Miika Hannula, Åsa Hirvonen, Juha Kontinen, Vadim Kulikov & Jonni Virtema (2019): Facets of Distribution Identities in Probabilistic Team Semantics. In: Francesco Calimeri, Nicola Leone & Marco Manna: Logics in Artificial Intelligence. Springer, pp. 304–320, doi:10.1007/978-3-030-19570-0_20.
  16. Miika Hannula & Juha Kontinen (2016): A finite axiomatization of conditional independence and inclusion dependencies. Information and Computation 249, pp. 121–137, doi:10.1007/978-3-319-04939-7_10.
  17. Jaakko Hintikka & Gabriel Sandu (1989): Informational independence as a semantic phenomenon. In: J.E Fenstad, I.T Frolov & R. Hilpinen: Logic, methodology and philosophy of science. Elsevier, pp. 571–589, doi:10.1016/S0049-237X(08)70066-1.
  18. Wilfrid Hodges (1997): A Shorter Model Theory. Cambridge University Press.
  19. Wilfrid Hodges (1997): Compositional Semantics for a Language of Imperfect Information. Journal of the Interest Group in Pure and Applied Logics 5 (4), pp. 539–563, doi:10.1093/jigpal/5.4.539.
  20. Neil Immerman (1982): Relational queries computable in polynomial time. In: Proceedings of the fourteenth annual ACM symposium on Theory of computing. ACM, pp. 147–152, doi:10.1016/S0019-9958(86)80029-8.
  21. Juha Kontinen (2010): Definability of second order generalized quantifiers. Archive for Mathematical Logic 49(3), pp. 379–398, doi:10.1007/s00153-010-0177-8.
  22. Juha Kontinen, Antti Kuusisto & Jonni Virtema (2014): Decidable Fragments of Logics Based on Team Semantics. CoRR abs/1410.5037. Available at
  23. Juha Kontinen, Antti Kuusisto & Jonni Virtema (2016): Decidability of Predicate Logics with Team Semantics. In: Piotr Faliszewski, Anca Muscholl & Rolf Niedermeier: 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016), Leibniz International Proceedings in Informatics (LIPIcs) 58. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 60:1–60:14, doi:10.4230/LIPIcs.MFCS.2016.60. Available at
  24. Juha Kontinen, Sebastian Link & Jouko Väänänen (2013): Independence in database relations. In: Logic, Language, Information, and Computation. Springer, pp. 179–193, doi:10.1007/978-3-642-39992-3_17.
  25. Antti Kuusisto (2015): A Double Team Semantics for Generalized Quantifiers. Journal of Logic, Language and Information 24(2), pp. 149–191, doi:10.1007/s10849-015-9217-4.
  26. Martin Lück (2018): Axiomatizations of team logics. Ann. Pure Appl. Logic 169(9), pp. 928–969, doi:10.1016/j.apal.2018.04.010.
  27. Allen L. Mann, Gabriel Sandu & Merlijn Sevenster (2011): Independence-Friendly Logic: A Game-Theoretic Approach. Cambridge University Press, doi:10.1017/CBO9780511981418.
  28. Raine Rönnholm (2018): Arity Fragments of Logics with Team Semantics. Tampere University. Available at
  29. Jouko Väänänen (2007): Dependence Logic. Cambridge University Press, doi:10.1017/CBO9780511611193.
  30. Moshe Y Vardi (1982): The complexity of relational query languages. In: Proceedings of the fourteenth annual ACM symposium on Theory of computing. ACM, pp. 137–146, doi:10.1145/800070.802186.

Comments and questions to:
For website issues: