Stephen L. Bloom & Zoltán Ésik (2009):
Scattered Algebraic Linear Orderings.
In: 6th Workshop on Fixed Points in Computer Science, FICS 2009, Coimbra, Portugal, September 12-13, 2009.,
pp. 25–29.
Stephen L. Bloom & Zoltán Ésik (2010):
Algebraic Ordinals.
Fundam. Inform. 99(4),
pp. 383–407,
doi:10.3233/FI-2010-255.
Stephen L. Bloom & Zoltán Ésik (2005):
The equational theory of regular words.
Information and Computation 197(1),
pp. 55 – 89,
doi:10.1016/j.ic.2005.01.004.
Stephen L. Bloom & Zoltán Ésik (2011):
Algebraic linear orderings.
International Journal of Foundations of Computer Science 22(02),
pp. 491–515,
doi:10.1142/S0129054111008155.
Bruno Courcelle (1983):
Fundamental properties of infinite trees.
Theoretical Computer Science 25(2),
pp. 95 – 169,
doi:10.1016/0304-3975(83)90059-2.
Zoltán Ésik (2011):
Scattered Context-Free Linear Orderings.
In: Giancarlo Mauri & Alberto Leporati: Developments in Language Theory.
Springer Berlin Heidelberg,
Berlin, Heidelberg,
pp. 216–227,
doi:10.1017/CBO9780511566097.
Zoltán Ésik (2011):
An undecidable property of context-free linear orders.
Information Processing Letters 111(3),
pp. 107 – 109,
doi:10.1016/j.ipl.2010.10.018.
Zoltán Ésik & Szabolcs Iván (2012):
Hausdorff Rank of Scattered Context-Free Linear Orders.
In: David Fernández-Baca: LATIN 2012: Theoretical Informatics.
Springer Berlin Heidelberg,
Berlin, Heidelberg,
pp. 291–302,
doi:10.1112/plms/s3-4.1.177.
Stephan Heilbrunner (1980):
An algorithm for the solution of fixed-point equations for infinite words.
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 14(2),
pp. 131–141,
doi:10.1051/ita/1980140201311.
John E. Hopcroft & Jeff D. Ullman (1979):
Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley Publishing Company.
Christos H. Papadimitriou (1994):
Computational complexity..
Addison-Wesley.
J.G. Rosenstein (1982):
Linear Orderings.
Pure and Applied Mathematics.
Elsevier Science.