1. P. Balbiani (2003): Eliminating unorthodox derivation rules in an axiom system for iteration-free PDL with intersection. Fundam. Inform. 56, pp. 211–242.
  2. P. Balbiani & L. Fariñas del Cerro (1998): Complete axiomatization of a relative modal logic with composition and intersection. J. of Applied Non-Classical Logics 8(4), pp. 325–335, doi:10.1080/11663081.1998.10510949.
  3. P. Balbiani & D. Vakarelov (2001): Iteration-free PDL with Intersection: a Complete Axiomatization. Fundam. Inform. 45(3), pp. 173–194.
  4. P. Balbiani & D. Vakarelov (2003): PDL with Intersection of Programs: A Complete Axiomatization. J. of Applied Non-Classical Logics 13(3-4), pp. 231–276, doi:10.3166/jancl.13.231-276.
  5. F. Berman & M. S. Paterson (1981): Propositional dynamic logic is weaker without tests. TCS 16, pp. 321–328, doi:10.1016/0304-3975(81)90102-X.
  6. S. Danecki (1984): Nondeterministic Propositional Dynamic Logic with intersection is decidable. In: Proc. 5th Symp. on Computation Theory, LNCS 208. Springer, pp. 34–53, doi:10.1007/3-540-16066-3_5.
  7. M. J. Fischer & R. E. Ladner (1979): Propositional Dynamic Logic of Regular Programs. J. of Comp. and Syst. Sc. 18(2), pp. 194–211, doi:10.1016/0022-0000(79)90046-1.
  8. D. Kozen & R. Parikh (1981): An Elementary Proof of the Completeness of PDL. TCS 14, pp. 113 – 118, doi:10.1016/0304-3975(81)90019-0.
  9. M. Lange & C. Lutz (2005): 2-ExpTime Lower Bounds for Propositional Dynamic Logics with Intersection. J. of Symbolic Logic 70(4), pp. 1072–1086, doi:10.2178/jsl/1129642115.
  10. R. Parikh (1978): The completeness of propositional dynamic logic. In: Proc. 7th Symp. on Math. Foundations of Computer Science, FOCS'78, LNCS 64. Springer, pp. 403–415, doi:10.1007/3-540-08921-7_88.
  11. S. Passy & T. Tinchev (1991): An essay in combinatory dynamic logic. Inform. and Comp. 93, pp. 263–332, doi:10.1016/0890-5401(91)90026-X.
  12. V. R. Pratt (1976): Semantical Considerations on Floyd-Hoare Logic. In: Proc. 17th Ann. Symp. on Foundations of Computer Science, FOCS'76. IEEE, pp. 109–121, doi:10.1109/SFCS.1976.27.
  13. V. R. Pratt (1980): A Near Optimal Method for Reasoning About Action. J. of Comp. and Syst. Sc. 2, pp. 231–254, doi:10.1016/0022-0000(80)90061-6.
  14. H. Prendinger & G. Schurz (1996): Reasoning about Action and Change. A Dynamic Logic Approach. J. of Logic, Language and Information 5(2), pp. 209–245, doi:10.1007/BF00173701.
  15. R. S. Streett (1982): Propositional Dynamic Logic of Looping and Converse Is Elementarily Decidable. Inform. and Control 54(1/2), pp. 121–141, doi:10.1016/S0019-9958(82)91258-X.

Comments and questions to:
For website issues: