1. Robert J. Aumann (1995): Backward induction and common knowledge of rationality. Games and Economic Behavior 8(1), pp. 6 – 19, doi:10.1016/S0899-8256(05)80015-6.
  2. Robert J. Aumann & Adam Brandenburger (1995): Epistemic Conditions for Nash Equilibrium. Econometrica 63(5), pp. 1161–1180, doi:10.2307/2171725.
  3. Endre Boros, Khaled Elbassioni, Vladimir Gurvich & Kazuhisa Makino (2012): On Nash equilibria and improvement cycles in pure positional strategies for Chess-like and Backgammon-like n-person games. Discrete Mathematics 312(4), pp. 772 – 788, doi:10.1016/j.disc.2011.11.011.
  4. Vasco Brattka, Guido Gherardi & Alberto Marcone (2012): The Bolzano-Weierstrass Theorem is the Jump of Weak König's Lemma. Annals of Pure and Applied Logic 163(6), pp. 623–625, doi:10.1016/j.apal.2011.10.006. Also arXiv:1101.0792.
  5. R. Cressman & K.H. Schlag (1998): The Dynamic (In)Stability of Backwards Induction. Journal of Economic Theory 83(2), pp. 260 – 285, doi:10.1006/jeth.1996.2465.
  6. Ross Cressman (2003): Evolutionary Dynamics and Extensive Form Games. MIT Press.
  7. D. Gale & F.M. Stewart (1953): Infinite games with perfect information. In: Contributions to the theory of games, Annals of Mathematical Studies 28. Princeton University Press, pp. 245–266, doi:10.1515/9781400881970-014.
  8. Sergiu Hart (2008): Dynamics and Equilibria. GAMES 2008.
  9. Sergiu Hart & Andreu Mas-Colell (2000): A simple adaptive procedure leading to correlated equilibrium. Econometrica 68, pp. 1127–1150, doi:10.1111/1468-0262.00153.
  10. Nikolai S. Kukushkin (2002): Perfect Information and Potential Games. Games and Economic Behavior 38(2), pp. 306 – 317, doi:10.1006/game.2001.0859.
  11. Nikolai S. Kukushkin (2011): Acyclicity of improvements in finite game forms. International Journal of Game Theory 40(1), pp. 147–177, doi:10.1007/s00182-010-0231-0.
  12. Stéphane Le Roux (2008): Generalisation and formalisation in game theory. Ph.D. thesis. Ecole Normale Supérieure de Lyon.
  13. Stéphane Le Roux (2009): Acyclic preferences and existence of sequential Nash equilibria: a formal and constructive equivalence. In: TPHOLs, International Conference on Theorem Proving in Higher Order Logics, Lecture Notes in Computer Science. Springer, pp. 293–309, doi:10.1007/978-3-642-03359-9_21.
  14. Stéphane Le Roux (2013): Infinite Sequential Nash Equilibria. Logical Methods in Computer Science 9(2), doi:10.2168/LMCS-9(2:3)2013.
  15. Stéphane Le Roux & Arno Pauly (2013): A semi-potential for finite and infinite sequential games. arXiv:1309.2798. Available at
  16. Stéphane Le Roux & Arno Pauly (2014): Infinite Sequential Games with Real-valued Payoffs. In: CSL-LICS '14. ACM, pp. 62:1–62:10, doi:10.1145/2603088.2603120.
  17. Stéphane Le Roux & Arno Pauly (2014): Weihrauch degrees of finding equilibria in sequential games. arXiv:1407.5587. Available at
  18. Stéphane Le Roux & Arno Pauly (2015): Weihrauch Degrees of Finding Equilibria in Sequential Games. In: Arnold Beckmann, Victor Mitrana & Mariya Soskova: Evolving Computability, Lecture Notes in Computer Science 9136. Springer, pp. 246–257, doi:10.1007/978-3-319-20028-6_25.
  19. Donald A. Martin (1975): Borel Determinacy. Annals of Mathematics 102(2), pp. pp. 363–371, doi:10.2307/1971035.
  20. D. Monderer & L.S. Shapley (1996): Potential games. Games and Economic Behavior 14(124), pp. 124–143, doi:10.1006/game.1996.0044.
  21. Arno Pauly (2015): Computability on the countable ordinals and the Hausdorff-Kuratowski theorem. arXiv 1501.00386. Available at
  22. Alvin E. Roth & Ido Erev (1995): Learning in extensive form games: Experimental data and simple dynamic models in the intermediate term. Games and Economic Behaviour 8, pp. 164–212, doi:10.1016/S0899-8256(05)80020-X.
  23. Eilon Solan & Nicolas Vieille (2003): Deterministic multi-player Dynkin games. Journal of Mathematical Economics 39(8), pp. 911 – 929, doi:10.1016/S0304-4068(03)00021-1.
  24. Zibo Xu (2013): Convergence of best-response dynamics in extensive-form games. SSE/EFI Working Paper Series in Economics and Finance 745. Stockholm School of Economics.

Comments and questions to:
For website issues: