1. C. Baier, J. Klein, S. Klüppelholz & S. Wunderlich (2014): Weight monitoring with linear temporal logic: complexity and decidability. In: Proc. of CSL-LICS. ACM, pp. 11:1–11:10, doi:10.1145/2603088.2603162.
  2. C. Beeri (1980): On the Membership Problem for Functional and Multivalued Dependencies in Relational Databases. ACM Trans. Database Syst. 5(3), pp. 241–259, doi:10.1145/320613.320614.
  3. V. Bruyère, Q. Hautem & M. Randour (2016): Window parity games: an alternative approach toward parity games with time bounds. CoRR abs/1606.01831. Available at
  4. A.K. Chandra, D. Kozen & L.J. Stockmeyer (1981): Alternation. J. ACM 28(1), pp. 114–133, doi:10.1145/322234.322243.
  5. K. Chatterjee, L. Doyen, M. Randour & J.-F. Raskin (2015): Looking at mean-payoff and total-payoff through windows. Information and Computation 242, pp. 25–52, doi:10.1016/j.ic.2015.03.010.
  6. K. Chatterjee & N. Fijalkow (2013): Infinite-state games with finitary conditions. In: Proc. of CSL, LIPIcs 23. Schloss Dagstuhl - LZI, pp. 181–196, doi:10.4230/LIPIcs.CSL.2013.181.
  7. K. Chatterjee & M. Henzinger (2014): Efficient and Dynamic Algorithms for Alternating Büchi Games and Maximal End-Component Decomposition. J. ACM 61(3), pp. 15:1–15:40, doi:10.1145/2597631.
  8. K. Chatterjee, T.A. Henzinger & F. Horn (2009): Finitary winning in ω-regular games. ACM Trans. Comput. Log. 11(1), doi:10.1145/1614431.1614432.
  9. K. Chatterjee, T.A. Henzinger & N. Piterman (2007): Generalized Parity Games. In: Proc. of FOSSACS, LNCS 4423. Springer, pp. 153–167, doi:10.1007/978-3-540-71389-0_12.
  10. K. Chatterjee, M. Randour & J.-F. Raskin (2014): Strategy synthesis for multi-dimensional quantitative objectives. Acta Informatica 51(3-4), pp. 129–163, doi:10.1007/s00236-013-0182-6.
  11. S. Dziembowski, M. Jurdzinski & I. Walukiewicz (1997): How Much Memory is Needed to Win Infinite Games?. In: Proc. of LICS. IEEE Computer Society, pp. 99–110, doi:10.1109/LICS.1997.614939.
  12. E.A. Emerson & C.S. Jutla (1988): The Complexity of Tree Automata and Logics of Programs (Extended Abstract). In: Proc. of FOCS, pp. 328–337, doi:10.1109/SFCS.1988.21949.
  13. E.A. Emerson & C.S. Jutla (1991): Tree Automata, Mu-Calculus and Determinacy (Extended Abstract). In: Proc. of FOCS. IEEE Computer Society, pp. 368–377, doi:10.1109/SFCS.1991.185392.
  14. E.A. Emerson, C.S. Jutla & A.P. Sistla (1993): On Model-Checking for Fragments of μ-Calculus. In: Proc. of CAV, LNCS 697. Springer, pp. 385–396, doi:10.1007/3-540-56922-7_32.
  15. N. Fijalkow & F. Horn (2010): The surprizing complexity of generalized reachability games. CoRR abs/1010.2420. Available at
  16. N. Fijalkow & M. Zimmermann (2014): Parity and Streett Games with Costs. LMCS 10(2), doi:10.2168/LMCS-10(2:14)2014.
  17. E. Grädel, W. Thomas & T. Wilke (2002): Automata, Logics, and Infinite Games: A Guide to Current Research. LNCS 2500. Springer, doi:10.1007/3-540-36387-4.
  18. F. Horn (2005): Streett Games on Finite Graphs. In GDV'05.
  19. N. Immerman (1981): Number of Quantifiers is Better Than Number of Tape Cells. J. Comput. Syst. Sci. 22(3), pp. 384–406, doi:10.1016/0022-0000(81)90039-8.
  20. M. Jurdzinski (1998): Deciding the Winner in Parity Games is in UP co-UP. Inf. Process. Lett. 68(3), pp. 119–124, doi:10.1016/S0020-0190(98)00150-1.
  21. M. Jurdzinski (2000): Small Progress Measures for Solving Parity Games. In: Proc. of STACS, LNCS 1770. Springer, pp. 290–301, doi:10.1007/3-540-46541-3_24.
  22. M. Jurdzinski, M. Paterson & U. Zwick (2008): A Deterministic Subexponential Algorithm for Solving Parity Games. SIAM J. Comput. 38(4), pp. 1519–1532, doi:10.1137/070686652.
  23. O. Kupferman, N. Piterman & M.Y. Vardi (2009): From liveness to promptness. FMSD 34(2), pp. 83–103, doi:10.1007/s10703-009-0067-z.
  24. D.A. Martin (1975): Borel determinacy. Annals of Mathematics 102(2), pp. 363–371, doi:10.2307/1971035.
  25. M. Randour (2013): Automated Synthesis of Reliable and Efficient Systems Through Game Theory: A Case Study. In: Proc. of ECCS 2012, Springer Proceedings in Complexity XVII. Springer, pp. 731–738, doi:10.1007/978-3-319-00395-5_90.
  26. S. Schewe (2007): Solving Parity Games in Big Steps. In: Proc. of FSTTCS, LNCS 4855. Springer, pp. 449–460, doi:10.1007/978-3-540-77050-3_37.
  27. W. Thomas (1997): Languages, Automata, and Logic. In: Handbook of Formal Languages, chapter 7 3, Beyond Words. Springer, pp. 389–455, doi:10.1007/978-3-642-59126-6_7.
  28. N. Wallmeier, P. Hütten & W. Thomas (2003): Symbolic Synthesis of Finite-State Controllers for Request-Response Specifications. In: Proc. of CIAA, LNCS 2759. Springer, pp. 11–22, doi:10.1007/3-540-45089-0_3.
  29. A. Weinert & M. Zimmermann (2016): Easy to Win, Hard to Master: Optimal Strategies in Parity Games with Costs. In: Proc. of CSL, LIPIcs. Schloss Dagstuhl - LZI. To appear.
  30. W. Zielonka (1998): Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees. Theor. Comput. Sci. 200(1-2), pp. 135–183, doi:10.1016/S0304-3975(98)00009-7.

Comments and questions to:
For website issues: