1. Jean Berstel (1973): Sur la densité asymptotique de langages formels. In: International Colloquium on Automata, Languages and Programming (ICALP, 1972). North-Holland, France, pp. 345–358.
  2. Jean Berstel & Dominique Perrin (1985): Theory of codes. Pure and applied mathematics. Academic Press, Orlando, San Diego, New York.
  3. Jean Berstel, Dominique Perrin & Christophe Reutenauer (2009): Codes and Automata (Encyclopedia of Mathematics and Its Applications), 1st edition. Cambridge University Press, New York, NY, USA.
  4. Andreas Blass, Yuri Gurevich & Dexter Kozen (1985): A Zero-One Law for Logic with a Fixed-Point Operator. Information and Control 67(1-3), pp. 70–90, doi:10.1016/S0019-9958(85)80027-9.
  5. Manuel Bodirsky, Tobias Gärtner, Timo von Oertzen & Jan Schwinghammer (2004): Efficiently Computing the Density of Regular Languages. In: Martín Farach-Colton: LATIN 2004: Theoretical Informatics, Lecture Notes in Computer Science 2976. Springer Berlin Heidelberg, pp. 262–270, doi:10.1007/978-3-540-24698-5_30.
  6. Volker Diekert, Paul Gastin & Manfred Kufleitner (2008): A Survey on Small Fragments of First-Order Logic over Finite Words. International Journal of Foundations of Computer Science 19(3), pp. 513–548, doi:10.1142/S0129054108005802.
  7. Samuel Eilenberg & Bret Tilson (1976): Automata, languages and machines. Volume B. Pure and applied mathematics. Academic Press, New-York, San Franciso, London.
  8. Zoltán Ésik & Masami Ito (2003): Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of Finite Automata. Acta Cybernetica 16(1), pp. 1–28. Available at
  9. Ronald Fagin (1976): Probabilities on Finite Models. J. Symb. Log. 41(1), pp. 50–58, doi:10.1017/S0022481200051756.
  10. Philippe Flajolet & Robert Sedgewick (2009): Analytic Combinatorics, 1 edition. Cambridge University Press, New York, NY, USA, doi:10.1017/CBO9780511801655.
  11. Ulf Grenander (1963): Probabilities on algebraic structures. Wiley, New York.
  12. Phokion G. Kolaitis & Moshe Y. Vardi (1992): Infinitary logics and 0–1 laws. Information and Computation 98(2), pp. 258 – 294, doi:10.1016/0890-5401(92)90021-7. Available at
  13. Phokion G. Kolaitis & Moshe Y. Vardi (2000): 0-1 Laws for Fragments of Existential Second-Order Logic: A Survey.. In: Mogens Nielsen & Branislav Rovan: MFCS, Lecture Notes in Computer Science 1893. Springer, pp. 84–98, doi:10.1007/3-540-44612-5_6. Available at
  14. Leonid Libkin (2004): Elements of Finite Model Theory. SpringerVerlag, doi:10.1007/978-3-662-07003-1.
  15. Per Martin-Löf (1965): Probability theory on discrete semigroups. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 4(1), pp. 78–102, doi:10.1007/BF00535486.
  16. Jean-Éric Pin: Mathematical foundations of automata theory. Available at
  17. Igor Rystsov (1997): Reset words for commutative and solvable automata. Theoretical Computer Science 172(1–2), pp. 273 – 279, doi:10.1016/S0304-3975(96)00136-3.
  18. Jacques Sakarovitch (2009): Elements of Automata Theory. Cambridge University Press, New York, NY, USA, doi:10.1017/CBO9781139195218.
  19. Arto Salomaa & M. Soittola (1978): Automata Theoretic Aspects of Formal Power Series. Springer-Verlag New York, Inc., Secaucus, NJ, USA, doi:10.1007/978-1-4612-6264-0.

Comments and questions to:
For website issues: