1. H. R. Andersen (1993): Verification of Temporal Properties of Concurrent Systems, Dept. of Computer Science, University of Aarhus, DK.
  2. R. Axelsson & M. Lange (2007): Model Checking the First-Order Fragment of Higher-Order Fixpoint Logic. In: Proc. 14th Int. Conf. on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR'07, LNCS 4790. Springer, pp. 62–76, doi:10.1007/978-3-540-75560-9_7.
  3. R. Axelsson, M. Lange & R. Somla (2007): The Complexity of Model Checking Higher-Order Fixpoint Logic. Logical Methods in Computer Science 3, pp. 1–33, doi:10.2168/LMCS-3(2:7)2007.
  4. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill & L. J. Hwang (1992): Symbolic Model Checking: 10^20 States and Beyond. Information and Computation 98(2), pp. 142–170, doi:10.1016/0890-5401(92)90017-A.
  5. R. Cleaveland & B. Steffen (1991): Computing Behavioural Relations, Logically. In: Proc. 18th Int. Coll. on Automata, Languages and Programming, ICALP'91, LNCS 510. Springer, pp. 127–138, doi:10.1007/3-540-54233-7_129.
  6. R. J. van Glabbeek (2001): The Linear Time – Branching Time Spectrum I; The Semantics of Concrete, Sequential Processes. In: Handbook of Process Algebra, chapter 1. Elsevier, pp. 3–99, doi:10.1016/B978-044482830-9/50019-9.
  7. H. Hüttel & S. Shukla (1996): On the Complexity of Deciding Behavioural Equivalences and Preorders. Technical Report SUNYA-CS-96-03. State University of New York at Albany.
  8. N. Jørgensen (1994): Finding Fixpoints in Finite Function Spaces using Neededness Analysis and Chaotic Iteration. In: Proc. 1st Int. Static Analysis Symposium, SAS'94, LNCS 864. Springer, pp. 329–345, doi:10.1007/3-540-58485-4_50.
  9. P. C. Kanellakis & S. A. Smolka (1990): CCS Expressions, Finite State Processes, and Three Problems of Equivalence. Information and Computation 86(1), pp. 43–68, doi:10.1016/0890-5401(90)90025-D.
  10. B. Knaster (1928): Un théorèm sur les fonctions d'ensembles. Annals Soc. Pol. Math 6, pp. 133–134.
  11. M. Lange & E. Lozes (2012): Model Checking the Higher-Dimensional Modal μ-Calculus. In: Proc. 8th Workshop on Fixpoints in Computer Science, FICS'12, Electr. Proc. in Theor. Comp. Sc. 77, pp. 39–46, doi:10.4204/EPTCS.77.6.
  12. M. Otto (1999): Bisimulation-invariant PTIME and higher-dimensional μ-calculus. Theor. Comput. Sci. 224(1-2), pp. 237–265, doi:10.1016/S0304-3975(98)00314-4.
  13. S. K. Shukla, H. B. Hunt III & D. J. Rosenkrantz (1996): HORNSAT, Model Checking, Verification and games (Extended Abstract). In: 8th Int. Conf. on Computer Aided Verification, CAV'96, LNCS 1102. Springer, pp. 99–110, doi:10.1007/3-540-61474-5_61.
  14. C. Stirling (2001): Modal and Temporal Properties of Processes. Texts in Computer Science. Springer.
  15. A. Tarski (1955): A Lattice-theoretical Fixpoint Theorem and its Application. Pacific Journal of Mathematics 5, pp. 285–309.
  16. M. Viswanathan & R. Viswanathan (2004): A Higher Order Modal Fixed Point Logic. In: Ph. Gardner & N. Yoshida: CONCUR, Lecture Notes in Computer Science 3170. Springer, pp. 512–528, doi:10.1007/978-3-540-28644-8_33.

Comments and questions to:
For website issues: