André Arnold (1999):
The μ-calculus alternation-depth hierarchy is strict on binary trees.
ITA 33(4/5),
pp. 329–340.
Available at http://dx.doi.org/10.1051/ita:1999121.
André Arnold & Damian Niwiński (1992):
Fixed point characterization of weak monadic logic definable sets of trees.
In: Tree Automata and Languages,
pp. 159–188.
Julian C. Bradfield (1999):
Fixpoint alternation: Arithmetic, transition systems, and the binary tree.
ITA 33(4/5),
pp. 341–356.
Available at http://dx.doi.org/10.1051/ita:1999122.
Arnaud Carayol, Christof Löding, Damian Niwiński & Igor Walukiewicz (2010):
Choice functions and well-orderings over the infinite binary tree.
Central European Journal of Mathematics 8,
pp. 662–682.
Available at http://dx.doi.org/10.2478/s11533-010-0046-z.
Olivier Finkel & Pierre Simonnet (2009):
On Recognizable Tree Languages Beyond the Borel Hierarchy.
Fundamenta Informaticae 95(2-3),
pp. 287–303.
Available at http://dx.doi.org/10.3233/FI-2009-151.
Szczepan Hummel & MichałSkrzypczak (2012):
The Topological Complexity of MSO+U and Related Automata Models.
Fundamenta Informaticae 119(1),
pp. 87–111.
Alexander S. Kechris (1995):
Classical Descriptive Set Theory.
Graduate Texts in Mathematics 156.
Springer-Verlag.
Yiannis N. Moschovakis (2009):
Descriptive Set Theory: Second Edition.
Mathematical Surveys and Monographs 155.
American Mathematical Society.
Damian Niwiński & Igor Walukiewicz (1996):
Ambiguity problem for automata on infinite trees.
Unpublished note.
Damian Niwiński & Igor Walukiewicz (2003):
A gap property of deterministic tree languages.
Theor. Comput. Sci. 1(303),
pp. 215–231.
Available at http://dx.doi.org/10.1016/S0304-3975(02)00452-8.
Michael O. Rabin (1969):
Decidability of Second-Order Theories and Automata on Infinite Trees.
Transactions of the AMS 141,
pp. 1–23.
Michael O. Rabin (1970):
Weakly Definable Relations and Special Automata.
Mathematical Logic and Foundations of Set Theory,
pp. 1–23.