1. V. Bárány (2006): A Hierarchy of Automatic omega-Words having a Decidable MSO Theory. In: On-line proceedings of the 11th JournŽes Montoises, Rennes 2006.
  2. Olivier Carton & Wolfgang Thomas (2002): The monadic theory of morphic infinite words and generalizations. Inf. Comput. 176(1), pp. 51–65, doi:10.1006/inco.2001.3139.
  3. T. Colcombet & C. Löding (2007): Transforming structures by set interpretations. Logical Methods in Computer Science 3(2), doi:10.2168/LMCS-3(2:4)2007.
  4. C.C. Elgot & M.O. Rabin (1966): Decidability of extensions of theory of successor. J. Symb. Log. 31(2), pp. 169–181, doi:10.2307/2269808.
  5. Séverine Fratani (2012): Regular sets over extended tree structures. Theoretical Computer Science 418(0), pp. 48 – 70, doi:10.1016/j.tcs.2011.10.020.
  6. Dexter Kozen (1992): On the Myhill-Nerode theorem for trees. Bull. Europ. Assoc. Theor. Comput. Sci. 47, pp. 170–173.
  7. André Nies (2007): Describing groups. Bull. Symbolic Logic 13(3), pp. 305–339, doi:10.2178/bsl/1186666149.
  8. Alexander Moshe Rabinovich & Wolfgang Thomas (2006): Decidable Theories of the Ordering of Natural Numbers with Unary Predicates. In: CSL, pp. 562–574. Available at
  9. Sasha Rubin (2008): Automata Presenting Structures: A Survey of the Finite String Case. Bulletin of Symbolic Logic 14(2), pp. 169–209, doi:10.2178/bsl/1208442827.
  10. Todor Tsankov (2011): The additive group of the rationals does not have an automatic presentation. J. Symbolic Logic 76(4), pp. 1341–1351, doi:10.2178/jsl/1318338853.

Comments and questions to:
For website issues: