1. Vince Bárány & Mikolaj Bojanczyk (2012): Finite satisfiability for guarded fixpoint logic. Inf. Process. Lett. 112(10), pp. 371–375, doi:10.1016/j.ipl.2012.02.005.
  2. R. Berger (1966): The undecidability of the domino problem. Mem. AMS 66.
  3. Patrick Blackburn, Maarten de Rijke & Yde Venema (2001): Modal Logic. Cambridge Tracts in Theoretical Comp. Sc. 53. Cambridge University Press, Cambridge.
  4. Egon Börger, Erich Grädel & Yuri Gurevich (1997): The Classical Decision Problem. Perspectives in Mathematical Logic. Springer.
  5. Igor Gorbunov (2006): A decidable modal logic that is finitely undecidable. In: Guido Governatori, Ian M. Hodkinson & Yde Venema: Advances in Modal Logic. College Publications, pp. 247–258. Available at
  6. Erich Grädel (1999): On the restraining power of guards. J. Symbolic Logic 64, pp. 1719–1742, doi:10.2307/2586808.
  7. Erich Grädel & Igor Walukiewicz (1999): Guarded fixed point logic. In: Fourteenth Annual IEEE Symposium on Logic in Computer Science, pp. 45–54, doi:10.1109/LICS.1999.782585.
  8. Yu. Sh. Gurevich & I. O. Koryakov (1972): Remarks on Berger's paper on the domino problem. Siberian Mathematical Journal 13, pp. 319–321, doi:10.1007/BF00971620.
  9. Edith Hemaspaandra (1996): The Price of Universality. Notre Dame Journal of Formal Logic 37, pp. 174–203, doi:10.1305/ndjfl/1040046086.
  10. Edith Hemaspaandra & Henning Schnoor (2008): On the Complexity of Elementary Modal Logics. In: Susanne Albers & Pascal Weil: STACS, LIPIcs 1. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, pp. 349–360, doi:10.4230/LIPIcs.STACS.2008.1356.
  11. Edith Hemaspaandra & Henning Schnoor (2011): A Universally Defined Undecidable Unimodal Logic. In: Filip Murlak & Piotr Sankowski: MFCS, Lecture Notes in Computer Science 6907. Springer, pp. 364–375, doi:10.1007/978-3-642-22993-0_34.
  12. Emanuel Kieroński, Jakub Michaliszyn & Jan Otop (2011): Modal Logics Definable by Universal Three-Variable Formulas. In: Supratik Chakraborty & Amit Kumar: FSTTCS, LIPIcs 13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 264–275, doi:10.4230/LIPIcs.FSTTCS.2011.264.
  13. Emanuel Kieroński, Jakub Michaliszyn, Ian Pratt-Hartmann & Lidia Tendera (2012): Two-variable first-order logic with equivalence closure. In: LICS '12: Proceedings of the 29th IEEE symposium on Logic in Computer Science.
  14. Emanuel Kieronski & Lidia Tendera (2007): On Finite Satisfiability of the Guarded Fragment with Equivalence or Transitive Guards. In: Nachum Dershowitz & Andrei Voronkov: LPAR, Lecture Notes in Computer Science 4790. Springer, pp. 318–332, doi:10.1007/978-3-540-75560-9_24.
  15. Jakub Michaliszyn (2009): Decidability of the Guarded Fragment with the Transitive Closure. In: Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas & Wolfgang Thomas: ICALP (2), Lecture Notes in Computer Science 5556. Springer, pp. 261–272, doi:10.1007/978-3-642-02930-1_22.
  16. Jakub Michaliszyn & Emanuel Kieroński (2012): Finite Satisfiability of Universally-Horn Definable Modal Logics. In: Accepted to AIML 2012. Available at
  17. Jakub Michaliszyn & Jan Otop (2012): Decidable Elementary Modal Logics. In: LICS '12: Proceedings of the 29th IEEE symposium on Logic in Computer Science. Available at
  18. Angelo Montanari, Gabriele Puppis & Pietro Sala (2010): Maximal Decidable Fragments of Halpern and Shoham's Modal Logic of Intervals.. In: Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide & Paul G. Spirakis: ICALP (2), Lecture Notes in Computer Science 6199. Springer, pp. 345–356, doi:10.1007/978-3-642-14162-1_29.
  19. Michael Mortimer (1975): On languages with two variables. Mathematical Logic Quarterly 21(1), pp. 135–140, doi:10.1002/malq.19750210118.
  20. Martin Otto (1998): Two Variable First-Order Logic over Ordered Domains. Journal of Symbolic Logic 66, pp. 685–702, doi:10.2307/2695037.
  21. Henrik Sahlqvist (1973): Completeness and correspondence in the first and second order semantics for modal logic. Proceedings of the Third Scandinavian Logic Symposium, doi:10.1016/S0049-237X(08)70728-6.
  22. M. Y. Vardi (1997): Why is modal logic so robustly decidable?. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 31, pp. 149–184.

Comments and questions to:
For website issues: