1. John C. Baez, Fabrizio Genovese, Jade Master & Michael Shulman (2021): Categories of Nets. In: 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE, pp. 1–13, doi:10.1109/LICS52264.2021.9470566.
  2. John C. Baez & Jade Master (2020): Open Petri nets. Mathematical Structures in Computer Science 30(3), pp. 314341, doi:10.1017/S0960129520000043.
  3. P. Baldan, M. Bocci, D. Brigolin, N. Cocco, M. Heiner & M. Simeoni (2018): Petri nets for modelling and analysing trophic networks. Fundamenta Informaticae 160(1-2), pp. 27–52, doi:10.3233/FI-2018-1673.
  4. P. Baldan, F. Bonchi, F. Gadducci & G.V. Monreale (2014): Encoding synchronous interactions using labelled Petri nets. In: International Conference on Coordination Languages and Models. Springer, pp. 1–16, doi:10.1007/978-3-662-43376-8_1.
  5. P. Baldan, F. Bonchi, F. Gadducci & G.V. Monreale (2015): Asynchronous Traces and Open Petri Nets. In: Programming Languages with Applications to Biology and Security. Springer, pp. 86–102, doi:10.1007/978-3-319-25527-9_8.
  6. P. Baldan, F. Bonchi, F. Gadducci & G.V. Monreale (2015): Modular encoding of synchronous and asynchronous interactions using open Petri nets. Science of Computer Programming 109, pp. 96–124, doi:10.1016/j.scico.2014.11.019.
  7. P. Baldan, N. Cocco, F. De Nes, M.L. Segura & M. Simeoni (2011): MPath2PN-Translating metabolic pathways into Petri nets. In: BioPPN2011 Int. Workshop on Biological Processes and Petri Nets, CEUR Workshop Proceedings 724, pp. 102–116.
  8. P. Baldan, A. Corradini, H. Ehrig & R. Heckel (2001): Compositional modeling of reactive systems using open nets. In: International Conference on Concurrency Theory. Springer, pp. 502–518, doi:10.1007/3-540-44685-0_34.
  9. P. Baldan, A. Corradini, H. Ehrig & B. König (2008): Open Petri nets: Non-deterministic processes and compositionality. In: International Conference on Graph Transformation. Springer, pp. 257–273, doi:10.1007/978-3-540-87405-8_18.
  10. P. Baldan, A. Corradini, F. Gadducci & U. Montanari (2010): From Petri nets to graph transformation systems. Electronic Communications of the EASST 26, doi:10.14279/tuj.eceasst.26.368.
  11. P. Baldan, A. Corradini & U. Montanari (2005): Relating SPO and DPO graph rewriting with Petri nets having read, inhibitor and reset arcs. Electronic Notes in Theoretical Computer Science 127(2), pp. 5–28, doi:10.1016/j.entcs.2005.02.003.
  12. P. Baldan & F. Gadducci (2019): Petri nets are dioids: a new algebraic foundation for non-deterministic net theory. Acta Informatica 56(1), pp. 61–92, doi:10.1007/s00236-018-0314-0.
  13. J. Bénabou: Introduction to Bicategories, pp. 1–77 47. Springer Berlin Heidelberg, doi:10.1007/BFb0074299.
  14. P. Buchholz (1994): Hierarchical High Level Petri Nets for Complex System Analysis. In: Application and Theory of Petri Nets, doi:10.1007/3-540-58152-9_8.
  15. J. Bénabou & T. Streicher (2000): Distributors at work. Lecture notes written by Thomas Streicher.
  16. G. L. Cattani & G. Winskel (2005): Profunctors, open maps and bisimulation. Mathematical Structures in Computer Science 15(03), pp. 553–614, doi:10.1017/S0960129505004718.
  17. J. Esparza & N. Mogens (1994): Decidability Issues for Petri Nets - a survey. J. Inf. Process. Cybern. 30(3), pp. 143–160.
  18. R. Fehling (1991): A concept of hierarchical Petri nets with building blocks. In: International Conference on Application and Theory of Petri Nets. Springer, pp. 148–168, doi:10.1007/3-540-56689-9_43.
  19. F. Genovese, A. Gryzlov, J. Herold, A. Knispel, M. Perone, E. Post & A. Videla: Idris-Ct: A Library to Do Category Theory in Idris. Available at
  20. F. Genovese, A. Gryzlov, J. Herold, M. Perone, E. Post & A. Videla: Computational Petri Nets: Adjunctions Considered Harmful. Available at
  21. F. Genovese & J. Herold: Executions in (Semi-)Integer Petri Nets Are Compact Closed Categories 287, pp. 127–144, doi:10.4204/EPTCS.287.7.
  22. F. Genovese, F. Loregian & D. Palombi: A Categorical Semantics for Bounded Petri Nets. Available at
  23. F. Genovese, F. Loregian & D. Palombi: Nets with Mana: A Framework for Chemical Reaction Modelling, doi:10.1007/978-3-030-78946-6_10. Available at
  24. F. Genovese & D.I. Spivak: A Categorical Semantics for Guarded Petri Nets. In: F. Gadducci & Timo Kehrer: Graph Transformation, Lecture Notes in Computer Science 12150. Springer International Publishing, pp. 57–74, doi:10.1007/978-3-030-51372-6_4.
  25. P. Huber, K. Jensen & R.M. Shapiro (1989): Hierarchies in coloured Petri nets. In: International Conference on Application and Theory of Petri Nets. Springer, pp. 313–341, doi:10.1007/978-3-662-06289-0_3.
  26. K. Jensen & L.M. Kristensen: Coloured Petri Nets. Springer Berlin Heidelberg, doi:10.1007/BFb0046842.
  27. G.M. Kelly (1989): Elementary observations on 2-categorical limits. Bulletin of the Australian Mathematical Society 39, pp. 301–317, doi:10.1017/S0004972700002781.
  28. M. Köhler-Bußmeier: A Survey of Decidability Results for Elementary Object Systems 1, pp. 99–123, doi:10.3233/FI-2014-983.
  29. F. Loregian (2021): Coend Calculus. London Mathematical Society Lecture Note Series 468. Cambridge University Press. ISBN 9781108746120.
  30. J. Master: Petri Nets Based on Lawvere Theories 30(7), pp. 833–864, doi:10.1017/S0960129520000262.
  31. J. Meseguer & U. Montanari: Petri Nets Are Monoids 88(2), pp. 105–155, doi:10.1016/0890-5401(90)90013-8.
  32. H. Oswald, R. Esser & R. Mattmann (1990): An environment for specifying and executing hierarchical Petri nets. In: [1990] Proceedings. 12th International Conference on Software Engineering. IEEE, pp. 164–172, doi:10.5555/100296.100319.
  33. D. Pavlovi\'c & S. Abramsky: Specifying Interaction Categories. In: Eugenio Moggi & Giuseppe Rosolini: Category Theory and Computer Science, Lecture Notes in Computer Science 1290. Springer Berlin Heidelberg, pp. 147–158, doi:10.5555/648335.755738.
  34. V. Sassone: On the Category of Petri Net Computations. In: TAPSOFT '95: Theory and Practice of Software Development 915. Springer Berlin Heidelberg, pp. 334–348, doi:10.1007/3-540-59293-8_205.
  35. Statebox Team: The Mathematical Specification of the Statebox Language. Available at
  36. Statebox Team: Statebox, Compositional Diagrammatic Programming Language. Available at
  37. University of Torino: GreatSPN Github Page. Available at
  38. F. Zanasi: Interacting Hopf Algebras: The Theory of Linear Systems. Available at

Comments and questions to:
For website issues: