1. Fabian Baumann, Philipp Lorenz-Spreen, Igor M. Sokolov & Michele Starnini (2020): Modeling Echo Chambers and Polarization Dynamics in Social Networks. Phys. Rev. Lett. 124, pp. 048301, doi:10.1103/PhysRevLett.124.048301.
  2. Nicolas Behr (2019): Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework. In: Rachid Echahed & Detlef Plump: Proceedings of theTenth International Workshop on Graph Computation Models (GCM 2019) in Eindhoven, The Netherlands, Electronic Proceedings in Theoretical Computer Science 309. Open Publishing Association, pp. 23–52, doi:10.4204/eptcs.309.2.
  3. Nicolas Behr (2021): On Stochastic Rewriting and Combinatorics via Rule-Algebraic Methods. In: Patrick Bahr: Proceedings 11th International Workshop on Computing with Terms and Graphs (TERMGRAPH 2020) 334. Open Publishing Association, pp. 11–28, doi:10.4204/eptcs.334.2.
  4. Nicolas Behr, Vincent Danos & Ilias Garnier (2016): Stochastic mechanics of graph rewriting. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science - LICS '16. ACM Press, pp. 46–55, doi:10.1145/2933575.2934537.
  5. Nicolas Behr, Vincent Danos & Ilias Garnier (2020): Combinatorial Conversion and Moment Bisimulation for Stochastic Rewriting Systems. Logical Methods in Computer Science Volume 16, Issue 3, doi:10.4204/EPTCS.323.4.
  6. Nicolas Behr & Jean Krivine (2021): Compositionality of Rewriting Rules with Conditions. Compositionality 3, doi:10.32408/compositionality-3-2.
  7. Nicolas Behr, Jean Krivine, Jakob L. Andersen & Daniel Merkle (2021): Rewriting theory for the life sciences: A unifying theory of CTMC semantics. Theoretical Computer Science 884, pp. 68–115, doi:10.1016/j.tcs.2021.07.026.
  8. Nicolas Behr & Pawel Sobocinski (2020): Rule Algebras for Adhesive Categories (extended journal version). Logical Methods in Computer Science Volume 16, Issue 3, doi:10.23638/LMCS-16(3:2)2020.
  9. Paolo Bolzern, Patrizio Colaneri & Giuseppe De Nicolao (2020): Opinion Dynamics in Social Networks: The Effect of Centralized Interaction Tuning on Emerging Behaviors. IEEE Transactions on Computational Social Systems 7(2), pp. 362–372, doi:10.1109/TCSS.2019.2962273.
  10. Andrea Corradini, Tobias Heindel, Frank Hermann & Barbara König (2006): Sesqui-Pushout Rewriting. In: A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro & G. Rozenberg: Graph Transformations (ICGT 2006), Lecture Notes in Computer Science 4178. Springer Berlin Heidelberg, pp. 30–45, doi:10.1007/11841883_4.
  11. Richard Durrett, James P. Gleeson, Alun L. Lloyd, Peter J. Mucha, Feng Shi, David Sivakoff, Joshua E. S. Socolar & Chris Varghese (2012): Graph fission in an evolving voter model. Proceedings of the National Academy of Sciences 109(10), pp. 3682–3687, doi:10.1073/pnas.1200709109.
  12. Sebastian Ehmes, Lars Fritsche & Andy Schürr (2019): SimSG: Rule-based Simulation using Stochastic Graph Transformation. J. Object Technol. 18(3), pp. 1:1–17, doi:10.5381/jot.2019.18.3.a1.
  13. Hoda Eydgahi, William W Chen, Jeremy L Muhlich, Dennis Vitkup, John N Tsitsiklis & Peter K Sorger (2013): Properties of cell death models calibrated and compared using Bayesian approaches. Molecular Systems Biology 9(1), pp. 644, doi:10.1038/msb.2012.69.
  14. Daniel T. Gillespie (1977): Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), pp. 2340–2361, doi:10.1021/j100540a008.
  15. Thilo Gross & Bernd Blasius (2008): Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5(20), pp. 259–271, doi:10.1098/rsif.2007.1229.
  16. Reiko Heckel, Georgios Lajios & Sebastian Menge (2004): Stochastic Graph Transformation Systems. In: Hartmut Ehrig, Gregor Engels, Francesco Parisi-Presicce & Grzegorz Rozenberg: Graph Transformations. Springer Berlin Heidelberg, pp. 210–225, doi:10.1007/978-3-540-30203-2_16.
  17. David Kempe, Jon M. Kleinberg & Éva Tardos (2015): Maximizing the Spread of Influence through a Social Network. Theory Comput. 11, pp. 105–147, doi:10.4086/toc.2015.v011a004.
  18. Pascal P. Klamser, Marc Wiedermann, Jonathan F. Donges & Reik V. Donner (2017): Zealotry effects on opinion dynamics in the adaptive voter model. Phys. Rev. E 96, pp. 052315, doi:10.1103/PhysRevE.96.052315.
  19. David J. Klinke (2014): In silico model-based inference: A contemporary approach for hypothesis testing in network biology. Biotechnology Progress 30, doi:10.1002/btpr.1982.
  20. Christian Krause & Holger Giese (2012): Probabilistic Graph Transformation Systems. In: Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski & Grzegorz Rozenberg: Graph Transformations, Lecture Notes in Computer Science 7562. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 311–325, doi:10.1007/978-3-642-33654-6_21.
  21. Erhan Leblebici, Anthony Anjorin & Andy Schürr (2014): Developing eMoflon with eMoflon. In: Davide Di Ruscio & Dániel Varró: Theory and Practice of Model Transformations, Lecture Notes in Computer Science 8568. Springer International Publishing, Cham, pp. 138–145, doi:10.1007/978-3-319-08789-4_10.
  22. Weiyi Liu, Kun Yue, Hong Wu, Jin Li, Donghua Liu & Duanping Tang (2016): Containment of competitive influence spread in social networks. Knowl. Based Syst. 109, pp. 266–275, doi:10.1016/j.knosys.2016.07.008.
  23. Mark Newman (2008): The physics of networks. Physics Today 61(11), pp. 33–38, doi:10.1063/1.3027989.
  24. Jonathan M Read, Ken T.D Eames & W. John Edmunds (2008): Dynamic social networks and the implications for the spread of infectious disease. Journal of The Royal Society Interface 5(26), pp. 1001–1007, doi:10.1098/rsif.2008.0013.
  25. Fabián Riquelme, Pablo Gonzalez Cantergiani, Xavier Molinero & Maria J. Serna (2018): Centrality measure in social networks based on linear threshold model. Knowl. Based Syst. 140, pp. 92–102, doi:10.1016/j.knosys.2017.10.029.
  26. Dániel Varró, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, István Ráth & Zoltán Ujhelyi (2016): Road to a reactive and incremental model transformation platform: three generations of the VIATRA framework. Software & Systems Modeling 15(3), pp. 609–629, doi:10.1007/s10270-016-0530-4.
  27. Gergely Varró & Frederik Deckwerth (2013): A Rete Network Construction Algorithm for Incremental Pattern Matching. In: Keith Duddy & Gerti Kappel: Theory and Practice of Model Transformations (ICMT 2013), Lecture Notes in Computer Science 7909. Springer Berlin Heidelberg, pp. 125–140, doi:10.1007/978-3-642-38883-5_13.
  28. Gerd Zschaler, Gesa A. Böhme, Michael Seißinger, Cristián Huepe & Thilo Gross (2012): Early fragmentation in the adaptive voter model on directed networks. Phys. Rev. E 85, pp. 046107, doi:10.1103/PhysRevE.85.046107.

Comments and questions to:
For website issues: