J. Berstel & C. Reutenauer (1984):
Rational Series and their languages.
EATCS Monographs on Theoretical Computer Science 12.
Springer.
B. Bollig, P. Gastin, B. Monmege & M. Zeitoun (2010):
Pebble weighted automata and transitive closure logics.
In: ICALP'10,
Lecture Notes in Computer Science 6199.
Springer,
pp. 587–598,
doi:10.1007/978-3-642-11301-7.
J.W. Carlyle & A. Paz (1971):
Realizations by Stochastic Finite Automata.
J. Comp. Syst. Sc. 5,
pp. 26–40,
doi:10.1016/S0022-0000(71)80005-3.
A. Cobham (1978):
Representation of a Word Function as the Sum of Two Functions.
Mathematical Systems Theory 11,
pp. 373–377,
doi:10.1007/BF01768487.
B. Courcelle, J.A. Makowsky & U. Rotics (2000):
Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width.
Theory of Computing Systems 33.2,
pp. 125–150,
doi:10.1007/s002249910009.
B. Courcelle, J.A. Makowsky & U. Rotics (2001):
On the Fixed Parameter Complexity of Graph Enumeration Problems Definable in Monadic Second Order Logic.
Discrete Applied Mathematics 108(1-2),
pp. 23–52,
doi:10.1016/S0166-218X(00)00221-3.
M. Droste & P. Gastin (2005):
Weighted Automata and Weighted Logics.
In: ICALP 2005,
pp. 513–525,
doi:10.1007/11523468_42.
M. Droste & P. Gastin (2007):
Weighted automata and weighted logics.
Theor. Comput. Sci. 380(1-2),
pp. 69–86,
doi:10.1016/j.tcs.2007.02.055.
M. Droste, W. Kuich & H. Vogler (2009):
Handbook of Weighted Automata.
EATCS Monographs on Theoretical Computer Science.
Springer.
M. Droste & H. Vogler (2006):
Weighted tree automata and weighted logics.
Theor. Comput. Sci. 366,
pp. 228–247,
doi:10.1016/j.tcs.2006.08.025.
Manfred Droste & Werner Kuich (2013):
Weighted finite automata over semirings.
Theor. Comput. Sci. 485,
pp. 38–48,
doi:10.1016/j.tcs.2013.02.028.
H.-D. Ebbinghaus & J. Flum (1995):
Finite Model Theory.
Perspectives in Mathematical Logic.
Springer,
doi:10.1007/978-3-662-03182-7.
M. Fliess (1974):
Matrices de Hankel.
J Maths Pures Appl 53,
pp. 197–222.
Erratum in volume 54.
B. Godlin, T. Kotek & J.A. Makowsky (2008):
Evaluation of graph polynomials.
In: 34th International Workshop on Graph-Theoretic Concepts in Computer Science, WG08,
Lecture Notes in Computer Science 5344,
pp. 183–194,
doi:10.1007/978-3-540-92248-3_17.
E. Grädel & Y. Gurevich (1998):
Metafinite Model Theory.
Information and Computation 140,
pp. 26–81,
doi:10.1006/inco.1997.2675.
J. E. Hopcroft & J. D. Ullman (1980):
Introduction to Automata Theory, Languages and Computation.
Addison-Wesley Series in Computer Science.
Addison-Wesley.
G. Jacob (1975):
Représentations et substitutions matricielles dans la théorie algébrique des transductions.
Université de Paris, VII.
T. Kotek (March 2012):
Definability of combinatorial functions.
Technion - Israel Institute of Technology, Haifa, Israel.
Submitted.
T. Kotek & J.A. Makowsky (2012):
Connection Matrices and the Definability of Graph Parameters.
In: CSL 2012,
pp. 411–425,
doi:10.4230/LIPIcs.CSL.2012.411.
T. Kotek, J.A. Makowsky & B. Zilber (2008):
On Counting Generalized Colorings.
In: Computer Science Logic, CSL'08,
Lecture Notes in Computer Science 5213,
pp. 339––353,
doi:10.1007/978-3-540-87531-4_25.
T. Kotek, J.A. Makowsky & B. Zilber (2011):
On Counting Generalized Colorings.
In: M. Grohe & J.A. Makowsky: Model Theoretic Methods in Finite Combinatorics,
Contemporary Mathematics 558.
American Mathematical Society,
pp. 207–242,
doi:10.1090/conm/558/11052.
J.A. Makowsky (2004):
Algorithmic uses of the Feferman-Vaught theorem.
Annals of Pure and Applied Logic 126.1-3,
pp. 159–213,
doi:10.1016/j.apal.2003.11.002.
J.A. Makowsky (2005):
Coloured Tutte polynomials and Kauffman brackets for graphs of bounded tree width.
Discrete Applied Mathematics 145(2),
pp. 276–290,
doi:10.1016/j.dam.2004.01.016.
J.A. Makowsky (2008):
From a Zoo to a Zoology: Towards a general theory of graph polynomials.
Theory of Computing Systems 43,
pp. 542–562,
doi:10.1007/s00224-007-9022-9.
Th. Skolem (1962):
Proof of some theorems on recursively enumerable sets.
Notre Dame Journal of Formal Logic 3.2,
pp. 65–74,
doi:10.1305/ndjfl/1093957149.
S.A. Volkov (2010):
On a class of Skolem elementary functions.
Journal of Applied and Industrial Mathematics 4.4,
pp. 588–599,
doi:10.1134/S1990478910040149.