References

  1. Associaiton for Standardization of Automation & Measuring Sytems (ASAM): OpenSCENARIO. https://www.asam.net/standards/detail/openscenario/. Accessed: 2023-08-30.
  2. Marco Bozzano, Riccardo Bussola, Marco Cristoforetti, Srajan Goyal, Martin Jonáš, Konstantinos Kapellos, Andrea Micheli, Davide Soldà, Stefano Tonetta, Christos Tranoris & Alessandro Valentini (2023): RobDT: AI-enhanced Digital Twin for Space Exploration Robotic Assets. In: The Use of Artificial Intelligence for Space Applications. Springer Nature Switzerland, pp. 183–198, doi:10.1007/978-3-031-25755-1_12.
  3. Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri & Stefano Tonetta (2014): The nuXmv Symbolic Model Checker. In: CAV, Lecture Notes in Computer Science 8559. Springer, pp. 334–342, doi:10.1007/978-3-319-08867-9_22.
  4. D. Chen & P. Krahenbuhl (2022): Learning from All Vehicles. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA, pp. 17201–17210, doi:10.1109/CVPR52688.2022.01671.
  5. Alessandro Cimatti, Alberto Griggio, Enrico Magnago, Marco Roveri & Stefano Tonetta (2019): Extending nuXmv with Timed Transition Systems and Timed Temporal Properties. In: Isil Dillig & Serdar Tasiran: Computer Aided Verification. Springer International Publishing, Cham, pp. 376–386, doi:10.1007/978-3-030-25540-4_21.
  6. Alessandro Cimatti, Alberto Griggio, Sergio Mover & Stefano Tonetta (2015): HyComp: An SMT-Based Model Checker for Hybrid Systems. In: TACAS, Lecture Notes in Computer Science 9035. Springer, pp. 52–67, doi:10.1007/978-3-662-46681-0_4.
  7. Alessandro Cimatti, Chun Tian & Stefano Tonetta (2019): Assumption-Based Runtime Verification with Partial Observability and Resets. In: RV, Lecture Notes in Computer Science 11757. Springer, pp. 165–184, doi:10.1007/978-3-030-32079-9_10.
  8. Alessandro Cimatti, Chun Tian & Stefano Tonetta (2019): NuRV: A nuXmv Extension for Runtime Verification. In: Bernd Finkbeiner & Leonardo Mariani: Runtime Verification. Springer International Publishing, Cham, pp. 382–392, doi:10.1007/978-3-030-32079-9_23.
  9. Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez & Vladlen Koltun (2017): CARLA: An Open Urban Driving Simulator. In: Sergey Levine, Vincent Vanhoucke & Ken Goldberg: Proceedings of the 1st Annual Conference on Robot Learning, Proceedings of Machine Learning Research 78. PMLR, pp. 1–16, doi:10.48550/arXiv.1711.03938.
  10. Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Hadi Ravanbakhsh, Marcell Vazquez-Chanlatte & Sanjit A. Seshia (2019): VerifAI: A Toolkit for the Formal Design and Analysis of Artificial Intelligence-Based Systems. In: Isil Dillig & Serdar Tasiran: Computer Aided Verification. Springer International Publishing, Cham, pp. 432–442, doi:10.1007/978-3-030-25540-4_25.
  11. O. foretellix: Open M-SDL. https://releases.asam.net/OpenSCENARIO/2.0-concepts/M-SDL_LRM_OS.pdf. Accessed: 2023-08-07.
  12. Simone Fratini, Patrick Fleith, Nicola Policella, Alberto Griggio, Stefano Tonetta, Srajan Goyal, Thi Thieu Hoa Le, Jacob Kimblad, Chun Tian, Konstantinos Kapellos, Christos Tranoris & Quirien Wijnands (2023): Verification and Validation of Autonomous Systems with Embedded AI: The VIVAS Approach. In: ASTRA, pp. To appear. Available at https://az659834.vo.msecnd.net/eventsairwesteuprod/production-atpi-public/070740b67e5b4a32a9be94228c9ac40d.
  13. Daniel J. Fremont, Edward Kim, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L. Sangiovanni-Vincentelli & Sanjit A. Seshia (2022): Scenic: a language for scenario specification and data generation. Machine Learning, doi:10.1007/s10994-021-06120-5.
  14. Xiaowei Huang, Marta Kwiatkowska, Sen Wang & Min Wu (2017): Safety Verification of Deep Neural Networks. In: Rupak Majumdar & Viktor Kunčak: Computer Aided Verification. Springer International Publishing, Cham, pp. 3–29, doi:10.1007/978-3-319-63387-9_1.
  15. Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian & Mykel J. Kochenderfer (2017): Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. In: CAV (1), Lecture Notes in Computer Science 10426. Springer, pp. 97–117, doi:10.1007/978-3-319-63387-9_5.
  16. Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljic, David L. Dill, Mykel J. Kochenderfer & Clark W. Barrett (2019): The Marabou Framework for Verification and Analysis of Deep Neural Networks. In: CAV (1), Lecture Notes in Computer Science 11561. Springer, pp. 443–452, doi:10.1007/978-3-030-25540-4_26.
  17. Moritz Klischat & Matthias Althoff (2020): Synthesizing Traffic Scenarios from Formal Specifications for Testing Automated Vehicles. In: IV. IEEE, pp. 2065–2072, doi:10.1109/IV47402.2020.9304617.
  18. Rupak Majumdar, Aman Mathur, Marcus Pirron, Laura Stegner & Damien Zufferey (2021): Paracosm: A Test Framework for Autonomous Driving Simulations. In: Esther Guerra & Mariëlle Stoelinga: Fundamental Approaches to Software Engineering. Springer International Publishing, Cham, pp. 172–195, doi:10.1007/978-3-030-71500-7_9.
  19. Corina S. Păsăreanu, Ravi Mangal, Divya Gopinath, Sinem Getir Yaman, Calum Imrie, Radu Calinescu & Huafeng Yu (2023): Closed-Loop Analysis of Vision-Based Autonomous Systems: A Case Study. In: Constantin Enea & Akash Lal: Computer Aided Verification. Springer Nature Switzerland, Cham, pp. 289–303, doi:10.1007/978-3-031-37706-8_15.
  20. Clément Robert, Jérémie Guiochet, Héléne Waeselynck & Luca Vittorio Sartori (2021): TAF: a Tool for Diverse and Constrained Test Case Generation. In: 2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS), pp. 311–321, doi:10.1109/QRS54544.2021.00042.
  21. Luca Vittorio Sartori, Hélène Waeselynck & Jérémie Guiochet (2023): Pairwise Testing Revisited for Structured Data With Constraints. In: ICST. IEEE, pp. 199–209, doi:10.1109/ICST57152.2023.00027.
  22. Hao Shao, Letian Wang, Ruobing Chen, Hongsheng Li & Yu Liu (2023): Safety-Enhanced Autonomous Driving Using Interpretable Sensor Fusion Transformer. In: Karen Liu, Dana Kulic & Jeff Ichnowski: Proceedings of The 6th Conference on Robot Learning, Proceedings of Machine Learning Research 205. PMLR, pp. 726–737, doi:10.48550/arXiv.2207.14024.
  23. Gagandeep Singh, Timon Gehr, Markus Püschel & Martin Vechev (2019): An Abstract Domain for Certifying Neural Networks. Proc. ACM Program. Lang. 3(POPL), doi:10.1145/3290354.
  24. CARLA Team: CARLA Autonomous Driving Leaderboard. https://leaderboard.carla.org/leaderboard/. Accessed: 2023-08-30.
  25. CARLA Team: CARLA ScenarioRunner. https://carla-scenariorunner.readthedocs.io. Accessed: 2023-08-30.
  26. Cumhur Erkan Tuncali, Georgios Fainekos, Hisahiro Ito & James Kapinski (2018): Sim-ATAV: Simulation-Based Adversarial Testing Framework for Autonomous Vehicles. In: Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (Part of CPS Week), HSCC '18. Association for Computing Machinery, New York, NY, USA, pp. 283–284, doi:10.1145/3178126.3187004.
  27. Eric Vin, Shun Kashiwa, Matthew Rhea, Daniel J. Fremont, Edward Kim, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L. Sangiovanni-Vincentelli & Sanjit A. Seshia (2023): 3D Environment Modeling for Falsification and Beyond with Scenic 3.0. In: Constantin Enea & Akash Lal: Computer Aided Verification. Springer Nature Switzerland, Cham, pp. 253–265, doi:10.1007/978-3-031-37706-8_13.
  28. Hermann Winner, Karsten Lemmer, Thomas Form & Jens Mazzega (2019): PEGASUS—First Steps for the Safe Introduction of Automated Driving. In: Gereon Meyer & Sven Beiker: Road Vehicle Automation 5. Springer International Publishing, Cham, pp. 185–195, doi:10.1007/978-3-319-94896-6_16.
  29. Penghao Wu, Xiaosong Jia, Li Chen, Junchi Yan, Hongyang Li & Yu Qiao (2022): Trajectory-guided Control Prediction for End-to-end Autonomous Driving: A Simple yet Strong Baseline. In: S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho & A. Oh: Advances in Neural Information Processing Systems 35. Curran Associates, Inc., pp. 6119–6132, doi:10.48550/arXiv.2206.08129.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org