Associaiton for Standardization of Automation & Measuring Sytems (ASAM):
OpenSCENARIO.
https://www.asam.net/standards/detail/openscenario/.
Accessed: 2023-08-30.
Marco Bozzano, Riccardo Bussola, Marco Cristoforetti, Srajan Goyal, Martin Jonáš, Konstantinos Kapellos, Andrea Micheli, Davide Soldà, Stefano Tonetta, Christos Tranoris & Alessandro Valentini (2023):
RobDT: AI-enhanced Digital Twin for Space Exploration Robotic Assets.
In: The Use of Artificial Intelligence for Space Applications.
Springer Nature Switzerland,
pp. 183–198,
doi:10.1007/978-3-031-25755-1_12.
Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri & Stefano Tonetta (2014):
The nuXmv Symbolic Model Checker.
In: CAV,
Lecture Notes in Computer Science 8559.
Springer,
pp. 334–342,
doi:10.1007/978-3-319-08867-9_22.
D. Chen & P. Krahenbuhl (2022):
Learning from All Vehicles.
In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE Computer Society,
Los Alamitos, CA, USA,
pp. 17201–17210,
doi:10.1109/CVPR52688.2022.01671.
Alessandro Cimatti, Alberto Griggio, Enrico Magnago, Marco Roveri & Stefano Tonetta (2019):
Extending nuXmv with Timed Transition Systems and Timed Temporal Properties.
In: Isil Dillig & Serdar Tasiran: Computer Aided Verification.
Springer International Publishing,
Cham,
pp. 376–386,
doi:10.1007/978-3-030-25540-4_21.
Alessandro Cimatti, Alberto Griggio, Sergio Mover & Stefano Tonetta (2015):
HyComp: An SMT-Based Model Checker for Hybrid Systems.
In: TACAS,
Lecture Notes in Computer Science 9035.
Springer,
pp. 52–67,
doi:10.1007/978-3-662-46681-0_4.
Alessandro Cimatti, Chun Tian & Stefano Tonetta (2019):
Assumption-Based Runtime Verification with Partial Observability and Resets.
In: RV,
Lecture Notes in Computer Science 11757.
Springer,
pp. 165–184,
doi:10.1007/978-3-030-32079-9_10.
Alessandro Cimatti, Chun Tian & Stefano Tonetta (2019):
NuRV: A nuXmv Extension for Runtime Verification.
In: Bernd Finkbeiner & Leonardo Mariani: Runtime Verification.
Springer International Publishing,
Cham,
pp. 382–392,
doi:10.1007/978-3-030-32079-9_23.
Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez & Vladlen Koltun (2017):
CARLA: An Open Urban Driving Simulator.
In: Sergey Levine, Vincent Vanhoucke & Ken Goldberg: Proceedings of the 1st Annual Conference on Robot Learning,
Proceedings of Machine Learning Research 78.
PMLR,
pp. 1–16,
doi:10.48550/arXiv.1711.03938.
Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Hadi Ravanbakhsh, Marcell Vazquez-Chanlatte & Sanjit A. Seshia (2019):
VerifAI: A Toolkit for the Formal Design and Analysis of Artificial Intelligence-Based Systems.
In: Isil Dillig & Serdar Tasiran: Computer Aided Verification.
Springer International Publishing,
Cham,
pp. 432–442,
doi:10.1007/978-3-030-25540-4_25.
O. foretellix:
Open M-SDL.
https://releases.asam.net/OpenSCENARIO/2.0-concepts/M-SDL_LRM_OS.pdf.
Accessed: 2023-08-07.
Simone Fratini, Patrick Fleith, Nicola Policella, Alberto Griggio, Stefano Tonetta, Srajan Goyal, Thi Thieu Hoa Le, Jacob Kimblad, Chun Tian, Konstantinos Kapellos, Christos Tranoris & Quirien Wijnands (2023):
Verification and Validation of Autonomous Systems with Embedded AI: The VIVAS Approach.
In: ASTRA,
pp. To appear.
Available at https://az659834.vo.msecnd.net/eventsairwesteuprod/production-atpi-public/070740b67e5b4a32a9be94228c9ac40d.
Daniel J. Fremont, Edward Kim, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L. Sangiovanni-Vincentelli & Sanjit A. Seshia (2022):
Scenic: a language for scenario specification and data generation.
Machine Learning,
doi:10.1007/s10994-021-06120-5.
Xiaowei Huang, Marta Kwiatkowska, Sen Wang & Min Wu (2017):
Safety Verification of Deep Neural Networks.
In: Rupak Majumdar & Viktor Kunčak: Computer Aided Verification.
Springer International Publishing,
Cham,
pp. 3–29,
doi:10.1007/978-3-319-63387-9_1.
Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian & Mykel J. Kochenderfer (2017):
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks.
In: CAV (1),
Lecture Notes in Computer Science 10426.
Springer,
pp. 97–117,
doi:10.1007/978-3-319-63387-9_5.
Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljic, David L. Dill, Mykel J. Kochenderfer & Clark W. Barrett (2019):
The Marabou Framework for Verification and Analysis of Deep Neural Networks.
In: CAV (1),
Lecture Notes in Computer Science 11561.
Springer,
pp. 443–452,
doi:10.1007/978-3-030-25540-4_26.
Moritz Klischat & Matthias Althoff (2020):
Synthesizing Traffic Scenarios from Formal Specifications for Testing Automated Vehicles.
In: IV.
IEEE,
pp. 2065–2072,
doi:10.1109/IV47402.2020.9304617.
Rupak Majumdar, Aman Mathur, Marcus Pirron, Laura Stegner & Damien Zufferey (2021):
Paracosm: A Test Framework for Autonomous Driving Simulations.
In: Esther Guerra & Mariëlle Stoelinga: Fundamental Approaches to Software Engineering.
Springer International Publishing,
Cham,
pp. 172–195,
doi:10.1007/978-3-030-71500-7_9.
Corina S. Păsăreanu, Ravi Mangal, Divya Gopinath, Sinem Getir Yaman, Calum Imrie, Radu Calinescu & Huafeng Yu (2023):
Closed-Loop Analysis of Vision-Based Autonomous Systems: A Case Study.
In: Constantin Enea & Akash Lal: Computer Aided Verification.
Springer Nature Switzerland,
Cham,
pp. 289–303,
doi:10.1007/978-3-031-37706-8_15.
Clément Robert, Jérémie Guiochet, Héléne Waeselynck & Luca Vittorio Sartori (2021):
TAF: a Tool for Diverse and Constrained Test Case Generation.
In: 2021 IEEE 21st International Conference on Software Quality, Reliability and Security (QRS),
pp. 311–321,
doi:10.1109/QRS54544.2021.00042.
Luca Vittorio Sartori, Hélène Waeselynck & Jérémie Guiochet (2023):
Pairwise Testing Revisited for Structured Data With Constraints.
In: ICST.
IEEE,
pp. 199–209,
doi:10.1109/ICST57152.2023.00027.
Hao Shao, Letian Wang, Ruobing Chen, Hongsheng Li & Yu Liu (2023):
Safety-Enhanced Autonomous Driving Using Interpretable Sensor Fusion Transformer.
In: Karen Liu, Dana Kulic & Jeff Ichnowski: Proceedings of The 6th Conference on Robot Learning,
Proceedings of Machine Learning Research 205.
PMLR,
pp. 726–737,
doi:10.48550/arXiv.2207.14024.
Gagandeep Singh, Timon Gehr, Markus Püschel & Martin Vechev (2019):
An Abstract Domain for Certifying Neural Networks.
Proc. ACM Program. Lang. 3(POPL),
doi:10.1145/3290354.
Cumhur Erkan Tuncali, Georgios Fainekos, Hisahiro Ito & James Kapinski (2018):
Sim-ATAV: Simulation-Based Adversarial Testing Framework for Autonomous Vehicles.
In: Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (Part of CPS Week),
HSCC '18.
Association for Computing Machinery,
New York, NY, USA,
pp. 283–284,
doi:10.1145/3178126.3187004.
Eric Vin, Shun Kashiwa, Matthew Rhea, Daniel J. Fremont, Edward Kim, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L. Sangiovanni-Vincentelli & Sanjit A. Seshia (2023):
3D Environment Modeling for Falsification and Beyond with Scenic 3.0.
In: Constantin Enea & Akash Lal: Computer Aided Verification.
Springer Nature Switzerland,
Cham,
pp. 253–265,
doi:10.1007/978-3-031-37706-8_13.
Hermann Winner, Karsten Lemmer, Thomas Form & Jens Mazzega (2019):
PEGASUS—First Steps for the Safe Introduction of Automated Driving.
In: Gereon Meyer & Sven Beiker: Road Vehicle Automation 5.
Springer International Publishing,
Cham,
pp. 185–195,
doi:10.1007/978-3-319-94896-6_16.
Penghao Wu, Xiaosong Jia, Li Chen, Junchi Yan, Hongyang Li & Yu Qiao (2022):
Trajectory-guided Control Prediction for End-to-end Autonomous Driving: A Simple yet Strong Baseline.
In: S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho & A. Oh: Advances in Neural Information Processing Systems 35.
Curran Associates, Inc.,
pp. 6119–6132,
doi:10.48550/arXiv.2206.08129.