1. Jaco W. de Bakker & Erik P. de Vink (1998): Denotational models for programming languages: applications of Banach's Fixed Point Theorem. Topology and its Applications 85(1-3), pp. 35–52, doi:10.1016/S0166-8641(97)00140-5.
  2. Patrick Cousot & Radhia Cousot (1979): Constructive versions of Tarski's fixed point theorems. Pacific J. of Math. 82(1), pp. 43–57, doi:10.2140/pjm.1979.82.43.
  3. Brian A. Davey & Hilary A. Priestley (2002): Introduction to Lattices and Order, second edition. Cambridge University Press, doi:10.1017/CBO9780511809088.
  4. Herbert B. Enderton (1977): Elements of Set Theory. Academic Press.
  5. Pascal Hitzler (2001): Generalized Metrics and Topology in Logic Programming Semantics. Department of Mathematics, National University of Ireland, University College Cork.
  6. Pascal Hitzler & Anthony Karel Seda (2003): Generalized metrics and uniquely determined logic programs. Theoretical Computer Science 305(1-3), pp. 187–219, doi:10.1016/S0304-3975(02)00709-0.
  7. Wilfrid Hodges (1993): Model Theory. Encyclopedia of Mathematics and its Applications 42. Cambridge University Press, doi:10.1017/CBO9780511551574.
  8. Dexter Kozen & Nicholas Ruozzi (2007): Applications of Metric Coinduction. In: CALCO'07: Proceedings of the 2nd international conference on Algebra and coalgebra in computer science. Springer-Verlag, Berlin, Heidelberg, pp. 327–341, doi:10.1007/978-3-540-73859-6_22.
  9. Edward A. Lee (1999): Modeling concurrent real-time processes using discrete events. Annals of Software Engineering 7(1), pp. 25–45, doi:10.1023/A:1018998524196.
  10. Edward A. Lee & Alberto Sangiovanni-Vincentelli (1998): A Framework for Comparing Models of Computation. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 17(12), pp. 1217–1229, doi:10.1109/43.736561.
  11. Xiaojun Liu, Eleftherios Matsikoudis & Edward A. Lee (2006): Modeling Timed Concurrent Systems. In: Christel Baier & Holger Hermanns: CONCUR 2006 – Concurrency Theory, Lecture Notes in Computer Science 4137. Springer Berlin / Heidelberg, pp. 1–15, doi:10.1007/11817949_1.
  12. John W. Lloyd (1987): Foundations of Logic Programming, second, extended edition. Springer-Verlag, doi:10.1007/978-3-642-83189-8.
  13. George Markowsky (1976): Chain-complete posets and directed sets with applications. Algebra Universalis 6(1), pp. 53–68, doi:10.1007/BF02485815.
  14. Eleftherios Matsikoudis & Edward A. Lee (2013): An Axiomatization of the Theory of Generalized Ultrametric Semilattices of Linear Signals. In: Leszek Gąsieniec & Frank Wolter: Fundamentals of Computation Theory, Lecture Notes in Computer Science 8070. Springer Berlin Heidelberg, pp. 248–258, doi:10.1007/978-3-642-40164-0_24.
  15. Eleftherios Matsikoudis & Edward A. Lee (2013): The Fixed-Point Theory of Strictly Causal Functions. Technical Report UCB/EECS-2013-122. EECS Department, University of California, Berkeley.
  16. Eleftherios Matsikoudis & Edward A. Lee (2013): On Fixed Points of Strictly Causal Functions. In: Víctor Braberman & Laurent Fribourg: Formal Modeling and Analysis of Timed Systems, Lecture Notes in Computer Science 8053. Springer Berlin Heidelberg, pp. 183–197, doi:10.1007/978-3-642-40229-6_13.
  17. Holger Naundorf (2000): Strictly causal functions have a unique fixed point. Theoretical Computer Science 238(1-2), pp. 483–488, doi:10.1016/S0304-3975(99)00165-6.
  18. Sibylla Priess-Crampe & Paulo Ribenboim (1993): Fixed Points, Combs and Generalized Power Series. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 63(1), pp. 227–244, doi:10.1007/BF02941344.
  19. Sibylla Priess-Crampe & Paulo Ribenboim (2000): Ultrametric spaces and logic programming. The Journal of Logic Programming 42(2), pp. 59–70, doi:10.1016/S0743-1066(99)00002-3.
  20. George M. Reed & A. William Roscoe (1986): A Timed Model for Communicating Sequential Processes. In: Laurent Kott: Automata, Languages and Programming, Lecture Notes in Computer Science 226. Springer Berlin / Heidelberg, pp. 314–323, doi:10.1007/3-540-16761-7_81.
  21. A. William Roscoe (1991): Topology, computer science, and the mathematics of convergence. In: G. M. Reed, A. W. Roscoe & R. F. Wachter: Topology and category theory in computer science, chapter 1. Oxford University Press, Inc., New York, NY, USA, pp. 1–27.
  22. William C. Rounds (1985): Applications of topology to semantics of communicating processes. In: Stephen Brookes, Andrew Roscoe & Glynn Winskel: Seminar on Concurrency, Lecture Notes in Computer Science 197. Springer Berlin / Heidelberg, pp. 360–372, doi:10.1007/3-540-15670-4_17.
  23. Erwin Schörner (2003): Ultrametric Fixed Point Theorems and Applications. In: Valuation Theory and its Applications, Fields Institute Communications II. American Mathematical Society, pp. 353–359.
  24. Dana S. Scott & Jaco W. de Bakker (1969): A theory of programs. Unpublished notes, Seminar on Programming, IBM Research Center, Vienna, Austria.
  25. Alfred Tarski (1955): A Lattice-Theoretical Fixpoint Theorem and its Applications. Pacific J. of Math. 5(2), pp. 285–309, doi:10.2140/pjm.1955.5.285.

Comments and questions to:
For website issues: