1. Roy Dyckhoff (1992): Contraction-Free Sequent Calculi for Intuitionistic Logic. J. Symb. Log. 57(3), pp. 795–807, doi:10.2307/2275431.
  2. Roy Dyckhoff & Luís Pinto (1994): Uniform Proofs and Natural Deductions. In: Didier Galmiche & Lincoln Wallen: Proceedings of CADE–12 Workshop on Proof Search in Type-Theoretic Languages. INRIA Lorraine – CRIN, pp. 717–23. Available at
  3. H. Herbelin (1995): A λ-calculus structure isomorphic to a Gentzen-style sequent calculus structure. In: L. Pacholski & J. Tiuryn: Proceedings of CSL'94, Lecture Notes in Computer Science 933. Springer-Verlag, pp. 61–75, doi:10.1007/BFb0022247.
  4. Ekaterina Komendantskaya, Guy McCusker & John Power (2010): Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming. In: Michael Johnson & Dusko Pavlovic: AMAST, Lecture Notes in Computer Science 6486. Springer, pp. 111–127, doi:10.1007/978-3-642-17796-5_7.
  5. Ekaterina Komendantskaya & John Power (2011): Coalgebraic Derivations in Logic Programming. In: Marc Bezem: CSL, LIPIcs 12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 352–366, doi:10.4230/LIPIcs.CSL.2011.352.
  6. Ekaterina Komendantskaya & John Power (2011): Coalgebraic Semantics for Derivations in Logic Programming. In: Andrea Corradini, Bartek Klin & Corina Cîrstea: CALCO, Lecture Notes in Computer Science 6859. Springer, pp. 268–282, doi:10.1007/978-3-642-22944-2_19.
  7. Chuck Liang & Dale Miller (2009): Focusing and Polarization in Linear, Intuitionistic, and Classical Logic. Theoretical Computer Science 410, pp. 4747–4768, doi:10.1016/j.tcs.2009.07.041.
  8. Dale Miller, Gopalan Nadathur, Frank Pfenning & Andre Scedrov (1991): Uniform Proofs as a Foundation for Logic Programming. Annals of Pure and Applied Logic 51(1-2), pp. 125–157, doi:10.1016/0168-0072(91)90068-W.
  9. Keiko Nakata, Tarmo Uustalu & Marc Bezem (2011): A Proof Pearl with the Fan Theorem and Bar Induction - Walking through Infinite Trees with Mixed Induction and Coinduction. In: Hongseok Yang: APLAS, LNCS 7078. Springer, pp. 353–368, doi:10.1007/978-3-642-25318-8_26.
  10. Celia Picard & Ralph Matthes (2012): Permutations in Coinductive Graph Representation. In: Dirk Pattinson & Lutz Schröder: Coalgebraic Methods in Computer Science (CMCS 2012), Lecture Notes in Computer Science, IFIP subseries 7399. Springer, pp. 218–237, doi:10.1007/978-3-642-32784-1_12.
  11. D.J. Pym & E. Ritter (2004): Reductive Logic and Proof-search: Proof Theory, Semantics, and Control. Oxford Logic Guides. Oxford University Press, Incorporated, doi:10.1093/acprof:oso/9780198526339.001.0001.

Comments and questions to:
For website issues: