Alex Rønning Bendixen, Bjarke Bredow Bojesen, Hans Hüttel & Stian Lybech (2022):
A Generic Type System for Higher-Order Ψ-calculi.
this volume of EPTCS.
Open Publishing Association.
Jesper Bengtson, Magnus Johansson, Joachim Parrow & Björn Victor (2009):
Psi-calculi: Mobile processes, nominal data, and logic.
In: 2009 24th Annual IEEE Symposium on Logic In Computer Science.
IEEE,
pp. 39–48,
doi:10.1016/S1571-0661(05)80361-5.
Jesper Bengtson, Magnus Johansson, Joachim Parrow & Björn Victor (2011):
Psi-calculi: a framework for mobile processes with nominal data and logic.
Logical Methods in Computer Science Volume 7, Issue 1,
doi:10.2168/LMCS-7(1:11)2011.
Available at https://lmcs.episciences.org/696.
Marco Carbone & Sergio Maffeis (2003):
On the Expressive Power of Polyadic Synchronisation in Pi-Calculus.
Nordic Journal of Computing 10(2),
pp. 70–98,
doi:10.1016/S1571-0661(05)80361-5.
Cédric Fournet & Georges Gonthier (2000):
The Join Calculus: A Language for Distributed Mobile Programming.
In: International Summer School on Applied Semantics.
Springer,
pp. 268–332,
doi:10.1007/3-540-45699-6_6.
Murdoch Gabbay & Andrew Pitts (2002):
A New Approach to Abstract Syntax with Variable Binding.
Formal Asp. Comput. 13,
pp. 341–363,
doi:10.1007/s001650200016.
Rob van Glabbeek (2018):
A theory of encodings and expressiveness.
In: International Conference on Foundations of Software Science and Computation Structures.
Springer, Cham,
pp. 183–202,
doi:10.1007/978-3-319-89366-2_10.
Daniele Gorla (2010):
Towards a unified approach to encodability and separation results for process calculi.
Information and Computation 208(9),
pp. 1031–1053,
doi:10.1016/j.ic.2010.05.002.
Daniele Gorla & Uwe Nestmann (2014):
Full abstraction for expressiveness: history, myths and facts.
Mathematical Structures in Computer Science 26,
pp. 639 – 654,
doi:10.1017/S0960129514000279.
L.G. Meredith & Matthias Radestock (2005):
A Reflective Higher-order Calculus.
Electronic Notes in Theoretical Computer Science 141(5),
pp. 49 – 67,
doi:10.1016/j.entcs.2005.05.016.
Proceedings of the Workshop on the Foundations of Interactive Computation (FInCo 2005).
Robin Milner (1993):
The Polyadic π-Calculus: a Tutorial.
In: Logic and Algebra of Specification.
Springer Berlin Heidelberg,
pp. 203–246,
doi:10.1007/978-3-642-58041-3_6.
Robin Milner, Joachim Parrow & David Walker (1992):
A calculus of mobile processes, I.
Information and Computation 100(1),
pp. 1–40,
doi:10.1016/0890-5401(92)90008-4.
Joachim Parrow (2001):
An introduction to the π-calculus.
In: Handbook of Process Algebra.
Elsevier,
pp. 479–543,
doi:10.1016/B978-044482830-9/50026-6.
Joachim Parrow, Johannes Borgström, Palle Raabjerg & Johannes Åman Pohjola (2014):
Higher-order psi-calculi.
Mathematical Structures in Computer Science 24(2),
doi:10.1017/S0960129513000170.
Benjamin C. Pierce & David N. Turner (2000):
Pict: a programming language based on the Pi-Calculus.
In: Proof, Language, and Interaction,
pp. 455–494,
doi:10.5555/345868.345924.
Davide Sangiorgi (1993):
Expressing mobility in process algebras: first-order and higher-order paradigms.
University of Edinburgh.
Available at http://hdl.handle.net/1842/6569.
Davide Sangiorgi (1993):
From π-calculus to higher-order π-calculus — and back.
In: M. C. Gaudel & J. P. Jouannaud: TAPSOFT'93: Theory and Practice of Software Development.
Springer Berlin Heidelberg,
pp. 151–166,
doi:10.1007/3-540-56610-4_62.
Brian Cantwell Smith (1982):
Procedural Reflection in Programming Languages.
Massachusetts Institute of Technology.
Available at http://hdl.handle.net/1721.1/15961.
David N. Turner (1996):
The Polymorphic Pi-calculus: Theory and Implementation.
University of Edinburgh, UK.
Available at https://hdl.handle.net/1842/395.