References

  1. Alex Rønning Bendixen, Bjarke Bredow Bojesen, Hans Hüttel & Stian Lybech (2022): A Generic Type System for Higher-Order Ψ-calculi. this volume of EPTCS. Open Publishing Association.
  2. Jesper Bengtson, Magnus Johansson, Joachim Parrow & Björn Victor (2009): Psi-calculi: Mobile processes, nominal data, and logic. In: 2009 24th Annual IEEE Symposium on Logic In Computer Science. IEEE, pp. 39–48, doi:10.1016/S1571-0661(05)80361-5.
  3. Jesper Bengtson, Magnus Johansson, Joachim Parrow & Björn Victor (2011): Psi-calculi: a framework for mobile processes with nominal data and logic. Logical Methods in Computer Science Volume 7, Issue 1, doi:10.2168/LMCS-7(1:11)2011. Available at https://lmcs.episciences.org/696.
  4. Marco Carbone & Sergio Maffeis (2003): On the Expressive Power of Polyadic Synchronisation in Pi-Calculus. Nordic Journal of Computing 10(2), pp. 70–98, doi:10.1016/S1571-0661(05)80361-5.
  5. Cédric Fournet & Georges Gonthier (2000): The Join Calculus: A Language for Distributed Mobile Programming. In: International Summer School on Applied Semantics. Springer, pp. 268–332, doi:10.1007/3-540-45699-6_6.
  6. Murdoch Gabbay & Andrew Pitts (2002): A New Approach to Abstract Syntax with Variable Binding. Formal Asp. Comput. 13, pp. 341–363, doi:10.1007/s001650200016.
  7. Rob van Glabbeek (2018): A theory of encodings and expressiveness. In: International Conference on Foundations of Software Science and Computation Structures. Springer, Cham, pp. 183–202, doi:10.1007/978-3-319-89366-2_10.
  8. Daniele Gorla (2010): Towards a unified approach to encodability and separation results for process calculi. Information and Computation 208(9), pp. 1031–1053, doi:10.1016/j.ic.2010.05.002.
  9. Daniele Gorla & Uwe Nestmann (2014): Full abstraction for expressiveness: history, myths and facts. Mathematical Structures in Computer Science 26, pp. 639 – 654, doi:10.1017/S0960129514000279.
  10. Stian Lybech (2022): Encodability and Separation for a Reflective Higher-Order Calculus. Technical Report. Department of Computer Science, Reykjavík University. Available at http://icetcs.ru.is/stian/2022/reflection_encodability2022techreport.pdf.
  11. L.G. Meredith & Matthias Radestock (2005): A Reflective Higher-order Calculus. Electronic Notes in Theoretical Computer Science 141(5), pp. 49 – 67, doi:10.1016/j.entcs.2005.05.016. Proceedings of the Workshop on the Foundations of Interactive Computation (FInCo 2005).
  12. Robin Milner (1993): The Polyadic π-Calculus: a Tutorial. In: Logic and Algebra of Specification. Springer Berlin Heidelberg, pp. 203–246, doi:10.1007/978-3-642-58041-3_6.
  13. Robin Milner, Joachim Parrow & David Walker (1992): A calculus of mobile processes, I. Information and Computation 100(1), pp. 1–40, doi:10.1016/0890-5401(92)90008-4.
  14. Joachim Parrow (2001): An introduction to the π-calculus. In: Handbook of Process Algebra. Elsevier, pp. 479–543, doi:10.1016/B978-044482830-9/50026-6.
  15. Joachim Parrow, Johannes Borgström, Palle Raabjerg & Johannes Åman Pohjola (2014): Higher-order psi-calculi. Mathematical Structures in Computer Science 24(2), doi:10.1017/S0960129513000170.
  16. Benjamin C. Pierce & David N. Turner (2000): Pict: a programming language based on the Pi-Calculus. In: Proof, Language, and Interaction, pp. 455–494, doi:10.5555/345868.345924.
  17. Davide Sangiorgi (1993): Expressing mobility in process algebras: first-order and higher-order paradigms. University of Edinburgh. Available at http://hdl.handle.net/1842/6569.
  18. Davide Sangiorgi (1993): From π-calculus to higher-order π-calculus — and back. In: M. C. Gaudel & J. P. Jouannaud: TAPSOFT'93: Theory and Practice of Software Development. Springer Berlin Heidelberg, pp. 151–166, doi:10.1007/3-540-56610-4_62.
  19. Brian Cantwell Smith (1982): Procedural Reflection in Programming Languages. Massachusetts Institute of Technology. Available at http://hdl.handle.net/1721.1/15961.
  20. David N. Turner (1996): The Polymorphic Pi-calculus: Theory and Implementation. University of Edinburgh, UK. Available at https://hdl.handle.net/1842/395.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org