1. G. Ambal, S. Lenglet & A. Schmitt (2021): HOπ in Coq. Journal of Automated Reasoning 65, pp. 75–124, doi:10.1007/s10817-020-09553-0.
  2. H. P. Barendregt (1984): The Lambda Calculus—Its Syntax and Semantics. North-Holland.
  3. M. Biernacka, D. Biernacki, S. Lenglet, P. Polesiuk, D. Pous & A. Schmitt (2017): Fully Abstract Encodings of λ-Calculus in HOcore through Abstract Machines. In: Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2017), pp. 1–12, doi:10.1109/LICS.2017.8005118.
  4. N.G. De Bruijn (1972): Lambda Calculus Notation with Nameless Dummies: A Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem. Indagationes Mathematicae 34, pp. 381–392, doi:10.1016/1385-7258(72)90034-0.
  5. M. Bundgaard, J. C. Godskesen & T. Hildebrandt (2004): Bisimulation Congruences for Homer ? A Calculus of Higher Order Mobile Embedded Resources. Technical Report. IT University of Copenhagen.
  6. M. Bundgaard, J. Chr. Godskesen, B. Haagensen & H. Hüttel (2009): Decidable Fragments of a Higher Order Calculus with Locations. In: Proceedings of the 15th International Workshop on Expressiveness in Concurrency (EXPRESS 2008) Electronic Notes in Theoretical Computer Science 242(1), pp. 113–138, doi:10.1016/j.entcs.2009.06.016.
  7. N. Busi, M. Gabbrielli & G. Zavattaro (2009): On the Expressive Power of Recursion, Replication and Iteration in Process Calculi. Mathematical Structures in Computer Science 19, pp. 1191–1222, doi:10.1017/S096012950999017X.
  8. W. Charatonik & J.-M. Talbot (2001): The Decidability of Model Checking Mobile Ambients. In: In Proceedings of the 15th International Workshop on Computer Science Logic (CSL 2001), Lecture Notes in Computer Science 2142, pp. 339–354, doi:10.1007/3-540-44802-0_24.
  9. S. Christensen, Y. Hirshfeld & F. Moller (1994): Decidable Subsets of CCS. The Computer Journal 37, pp. 233–242, doi:10.1093/comjnl/37.4.233.
  10. C. Di Giusto, J. A. Pérez & G. Zavattaro (2009): On the Expressiveness of Forwarding in Higher-Order Communication. In: In Proceedings of the 6th International Colloquium on Theoretical Aspects of Computing (ICTAC 2009), Lecture Notes in Computer Science 5684, pp. 155–169, doi:10.1007/978-3-642-03466-4_10.
  11. P. Jančar (1995): Undecidability of Bisimilarity for Petri Nets and Some Related Problems. Theoretical Computer Science 148, pp. 281–301, doi:10.1016/0304-3975(95)00037-W.
  12. V. Koutavas & M. Hennessy (2012): First-order Reasoning for Higher-order Concurrency. Computer Languages, Systems and Structures 38, pp. 242–277, doi:10.1016/
  13. A. Kučera & P. Jančar (2006): Equivalence-checking on Infinite-state Systems: Techniques and Results. Theory and Practice of Logic Programming 6, pp. 227–264, doi:10.1017/S1471068406002651.
  14. I. Lanese, J. A. Pérez, D. Sangiorgi & A. Schmitt (2010): On the Expressiveness of Polyadic and Synchronous Communication in Higher-order Process Calculi. In: In Proceedings of 37th International Colloquium on Automata, Languages and Programming (ICALP 2010), Lecture Notes in Computer Science 6199, pp. 442–453, doi:10.1007/978-3-642-14162-1_37.
  15. I. Lanese, J. A. Pérez, D. Sangiorgi & A. Schmitt (2011): On the Expressiveness and Decidability of Higher-Order Process Calculi. Information and Computation 209(2), pp. 198–226, doi:10.1016/j.ic.2010.10.001.
  16. R. Milner (1989): Communication and Concurrency. Prentice Hall.
  17. R. Milner & F. Moller (1993): Unique Decomposition of Processes. Theoretical Computer Science 107(2), pp. 357–363, doi:10.1016/0304-3975(93)90176-t.
  18. J.A. Pérez (2010): Higher-Order Concurrency: Expressiveness and Decidability Results. Phd thesis. University of Bologna, Italy.
  19. D. Sangiorgi (1992): Expressing Mobility in Process Algebras: First-order and Higher-order Paradigms. Phd thesis. University of Edinburgh.
  20. D. Sangiorgi (1996): Pi-calculus, Internal Mobility and Agent-Passing Calculi. Theoretical Computer Science 167(2), doi:10.1016/0304-3975(96)00075-8. Extracts of parts of the material contained in this paper can be found in the Proceedings of TAPSOFT'95 and ICALP'95.
  21. D. Sangiorgi & D. Walker (2001): The Pi-calculus: a Theory of Mobile Processes. Cambridge Universtity Press.
  22. A. Schmitt & J. B. Stefani (2004): The Kell Calculus: a Family of Higher-order Distributed Process Calculi. In: In IST/FET International Workshop on Global Computing, Lecture Notes in Computer Science 3267, pp. 146–178, doi:10.1007/978-3-540-31794-4_9.
  23. P. Schnoebelen (2001): Bisimulation and Other Undecidable Equivalences for Lossy Channel Systems. In: In Proceedings of 4th International Symposium on Theoretical Aspects of Computer Software (TACS?01), Lecture Notes in Computer Science 2215, pp. 385–399, doi:10.1007/3-540-45500-0_19.
  24. B. Thomsen (1993): Plain CHOCS, a Second Generation Calculus for Higher-Order Processes. Acta Informatica 30(1), pp. 1–59, doi:10.1007/BF01200262.
  25. Xian Xu (2020): Parameterizing Higher-order Processes on Names and Processes. RAIRO - Theoretical Informatics and Applications 53(3-4), pp. 153–206, doi:10.1051/ita/2019005.
  26. Xian Xu & Wenbo Zhang (2021): On Decidability of the Bisimilarity on Higher-order Processes with Parameterization (long version). Available at
  27. Qiang Yin, Xian Xu & Huan Long (2017): On Parameterization of Higher-order Processes. International Journal of Computer Mathematics 94(7), pp. 1451–1478, doi:10.1080/00207160.2016.1210793.

Comments and questions to:
For website issues: