1. Gérard Boudol (1992): Asynchrony and the Pi-calculus. Technical Report Research Report RR-1702,inria-00076939. INRIA, France. Available at
  2. Avik Chaudhuri (2009): A concurrent ML library in concurrent Haskell. In: ICFP 2009. ACM, pp. 269–280, doi:10.1145/1596550.1596589.
  3. Rob van Glabbeek, Ursula Goltz, Christopher Lippert & Stephan Mennicke (2019): Stronger Validity Criteria for Encoding Synchrony. In: The Art of Modelling Computational Systems: A Journey from Logic and Concurrency to Security and Privacy - Essays Dedicated to Catuscia Palamidessi on the Occasion of Her 60th Birthday, LNCS 11760. Springer, pp. 182–205, doi:10.1007/978-3-030-31175-9_11.
  4. Daniele Gorla (2010): Towards a unified approach to encodability and separation results for process calculi. Inf. Comput. 208(9), pp. 1031–1053, doi:10.1016/j.ic.2010.05.002.
  5. Kohei Honda & Mario Tokoro (1991): An Object Calculus for Asynchronous Communication. In: Proceedings of the European Conference on Object-Oriented Programming, ECOOP '91. Springer-Verlag, pp. 133–147, doi:10.1007/BFb0057019.
  6. Robin Milner, Joachim Parrow & David Walker (1992): A calculus of mobile processes, I. Information and computation 100(1), pp. 1–40, doi:10.1016/0890-5401(92)90008-4.
  7. Joachim Niehren, Jan Schwinghammer & Gert Smolka (2006): A Concurrent Lambda Calculus with Futures. Theoretical Computer Science 364(3), pp. 338–356, doi:10.1016/j.tcs.2006.08.016.
  8. Catuscia Palamidessi (1997): Comparing the Expressive Power of the Synchronous and the Asynchronous pi-calculus. In: POPL 1997. ACM Press, pp. 256–265, doi:10.1145/263699.263731.
  9. Catuscia Palamidessi (2003): Comparing The Expressive Power Of The Synchronous And Asynchronous Pi-Calculi. Math. Structures Comput. Sci. 13(5), pp. 685–719, doi:10.1017/S0960129503004043.
  10. Simon L. Peyton Jones, Andrew Gordon & Sigbjorn Finne (1996): Concurrent Haskell. In: POPL 1996. ACM, pp. 295–308, doi:10.1145/237721.237794.
  11. Arend Rensink & Walter Vogler (2007): Fair testing. Inform. and Comput. 205(2), pp. 125–198, doi:10.1016/j.ic.2006.06.002.
  12. George Russell (2001): Events in Haskell, and How to Implement Them. In: ICFP 2001. ACM, pp. 157–168, doi:10.1145/507635.507655.
  13. David Sabel & Manfred Schmidt-Schauß (2008): A Call-by-Need Lambda-Calculus with Locally Bottom-Avoiding Choice: Context Lemma and Correctness of Transformations. Math. Structures Comput. Sci. 18(03), pp. 501–553, doi:10.1017/S0960129508006774.
  14. David Sabel & Manfred Schmidt-Schauß (2011): A contextual semantics for Concurrent Haskell with futures. In: PPDP 2011. ACM, pp. 101–112, doi:10.1145/2003476.2003492.
  15. David Sabel & Manfred Schmidt-Schauß (2012): Conservative Concurrency in Haskell. In: LICS 2012. IEEE, pp. 561–570, doi:10.1109/LICS.2012.66.
  16. Davide Sangiorgi & David Walker (2001): The π-calculus: a theory of mobile processes. Cambridge university press.
  17. Manfred Schmidt-Schauß, Joachim Niehren, Jan Schwinghammer & David Sabel (2008): Adequacy of Compositional Translations for Observational Semantics. In: IFIP TCS 2008, IFIP 273. Springer, pp. 521–535, doi:10.1007/978-0-387-09680-3_35.
  18. Manfred Schmidt-Schauß & David Sabel (2010): Closures of may-, should- and must-convergences for contextual equivalence. Inform. and Comput. 110(6), pp. 232 – 235, doi:10.1016/j.ipl.2010.01.001.
  19. Manfred Schmidt-Schauß & David Sabel (2020): Correctly Implementing Synchronous Message Passing in the Pi-Calculus By Concurrent Haskell's MVars. In: EXPRESS/SOS 2020, Electronic Proceedings in Theoretical Computer Science 322. Open Publishing Association, pp. 88–105, doi:10.4204/EPTCS.322.8.
  20. Manfred Schmidt-Schauß & David Sabel (2020): On Impossibility of Simple Translations of Concurrent Calculi. Presented at WPTE 2020, pre-proceedings available via
  21. Manfred Schmidt-Schauß, David Sabel & Nils Dallmeyer (2018): Sequential and Parallel Improvements in a Concurrent Functional Programming Language. In: PPDP 2018. ACM, pp. 20:1–20:13, doi:10.1145/3236950.3236952.
  22. Manfred Schmidt-Schauß, David Sabel, Joachim Niehren & Jan Schwinghammer (2015): Observational program calculi and the correctness of translations. Theor. Comput. Sci. 577, pp. 98–124, doi:10.1016/j.tcs.2015.02.027.
  23. Manfred Schmidt-Schau\IeCß & David Sabel (2021): Minimal Translations from Synchronous Communication to Synchronizing Locks (Extended Version). CoRR abs/2107.14651. Available at
  24. Jan Schwinghammer, David Sabel, Manfred Schmidt-Schauß & Joachim Niehren (2009): Correctly translating concurrency primitives. In: ML 2009. ACM, pp. 27–38, doi:10.1145/1596627.1596633.

Comments and questions to:
For website issues: