1. A. V. Aho (1968): Indexed Grammars - An Extension of Context-Free Grammars. J. ACM 15(4), pp. 647–671, doi:10.1145/321479.321488.
  2. R. Alur & P. Madhusudan (2004): Visibly pushdown languages. In: Proc. 36th Ann. ACM Symp. on Theory of Computing, STOC'04. ACM Press, New York, pp. 202–211, doi:10.1145/1007352.1007390.
  3. R. Axelsson & M. Lange (2011): Formal Language Constrained Reachability and Model Checking Propositional Dynamic Logics. In: Proc. 5th Workshop on Reachability Problems, RP'11, LNCS 6945. Springer, pp. 45–57, doi:10.1007/978-3-642-24288-5_6.
  4. R. Axelsson, M. Lange & R. Somla (2007): The Complexity of Model Checking Higher-Order Fixpoint Logic. Logical Methods in Computer Science 3, pp. 1–33, doi:10.2168/LMCS-3(2:7)2007.
  5. F. Bruse & M. Lange (2020): Temporal Logic with Recursion. In: Proc. 27th Int. Symp. on Temporal Representation and Reasoning, TIME'20, LIPIcs 178. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 6:1–6:14, doi:10.4230/LIPIcs.TIME.2020.6.
  6. F. Bruse & M. Lange (2021): A Decidable Non-Regular Modal Fixpoint Logic. In: Proc. 32nd Int. Conf. on Concurrency Theory, CONCUR'21, LIPIcs 203. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 23:1–23:18, doi:10.4230/LIPIcs.CONCUR.2021.23.
  7. F. Bruse, M. Lange & É. Lozes (2021): The Complexity of Model Checking Tail-Recursive Higher-Order Fixpoint Logic. Fundamenta Informaticae 178(1–2), pp. 1–30, doi:10.3233/FI-2021-1996.
  8. J. A. Brzozowski (1964): Derivatives of Regular Expressions. J. of the ACM 11(4), pp. 481–494, doi:10.1145/321239.321249.
  9. E. M. Clarke & E. A. Emerson (1981): Design and Synthesis of Synchronization Skeletons using Branching Time Temporal Logic. In: D. Kozen: Proc. Workshop on Logics of Programs, LNCS 131. Springer, Yorktown Heights, New York, pp. 52–71, doi:10.1007/BFb0025774.
  10. M. J. Fischer & R. E. Ladner (1979): Propositional Dynamic Logic of Regular Programs. Journal of Computer and System Sciences 18(2), pp. 194–211, doi:10.1016/0022-0000(79)90046-1.
  11. D. Harel, A. Pnueli & J. Stavi (1983): Propositional Dynamic Logic of Nonregular Programs. Journal of Computer and System Sciences 26(2), pp. 222–243, doi:10.1016/0022-0000(83)90014-4.
  12. D. Kozen (1983): Results on the Propositional μ-calculus. TCS 27, pp. 333–354, doi:10.1016/0304-3975(82)90125-6.
  13. M. Lange (2005): Model Checking Propositional Dynamic Logic with All Extras. Journal of Applied Logic 4(1), pp. 39–49, doi:10.1016/j.jal.2005.08.002.
  14. M. Lange (2007): Three Notes on the Complexity of Model Checking Fixpoint Logic with Chop. R.A.I.R.O. – Theoretical Informatics and Applications 41, pp. 177–190, doi:10.1051/ita:2007011.
  15. M. Lange & R. Somla (2006): Propositional Dynamic Logic of Context-Free Programs and Fixpoint Logic with Chop. Information Processing Letters 100(2), pp. 72–75, doi:10.1016/j.ipl.2006.04.019.
  16. C. Löding, C. Lutz & O. Serre (2007): Propositional dynamic logic with recursive programs. J. Log. Algebr. Program 73(1-2), pp. 51–69, doi:10.1016/j.jlap.2006.11.003.
  17. C. Löding, P. Madhusudan & O. Serre (2004): Visibly Pushdown Games. In: Proc. 24th Int. Conf. on Foundations of Software Technology and Theoretical Computer Science, FSTTCS'04, LNCS 3328. Springer, pp. 408–420, doi:10.1007/978-3-540-30538-5_34.
  18. K. Mehlhorn (1980): Pebbling mountain ranges and its application to DCFL-recognition. In: Proc. 7th Int. Coll. on Automata, Languages and Programming, ICALP'80, LNCS 85. Springer, pp. 422–435, doi:10.1007/3-540-10003-2_89.
  19. M. Müller-Olm (1999): A Modal Fixpoint Logic with Chop. In: Proc. 16th Symp. on Theoretical Aspects of Computer Science, STACS'99, LNCS 1563. Springer, pp. 510–520, doi:10.1007/3-540-49116-3_48.
  20. R. J. Parikh (1966): On Context-Free Languages. J. of the ACM 13(4), pp. 570–581, doi:10.1145/321356.321364.
  21. A. Pnueli (1977): The temporal logic of programs. In: Proc. 18th Symp. on Foundations of Computer Science, FOCS'77. IEEE, Providence, RI, USA, pp. 46–57, doi:10.1109/SFCS.1977.32.
  22. M. Rabin & D. Scott (1959): Finite automata and their decision problems. IBM Journal of Research and Development 3, pp. 114–125, doi:10.1147/rd.32.0114.
  23. A. Tarski (1955): A Lattice-theoretical Fixpoint Theorem and its Application. Pacific Journal of Mathematics 5, pp. 285–309, doi:10.2140/pjm.1955.5.285.
  24. S. La Torre, P. Madhusudan & G. Parlato (2007): A Robust Class of Context-Sensitive Languages. In: Proc. 22nd Conf. on Logic in Computer Science, LICS'07. IEEE, pp. 161–170, doi:10.1109/LICS.2007.9.
  25. M. Viswanathan & R. Viswanathan (2004): A Higher Order Modal Fixed Point Logic. In: Proc. 15th Int. Conf. on Concurrency Theory, CONCUR'04, LNCS 3170. Springer, pp. 512–528, doi:10.1007/978-3-540-28644-8_33.

Comments and questions to:
For website issues: