1. J. C. M. Baeten, J. A. Bergstra & J. W. Klop (1986): Syntax and defining equations for an interrupt mechanism in process algebra. Fundamenta Informaticae 9(2), pp. 127–167.
  2. J. C. M. Baeten, B. Luttik & P. van Tilburg (2013): Reactive Turing machines. Inf. Comput. 231, pp. 143–166, doi:10.1016/j.ic.2013.08.010.
  3. J. C. M. Baeten, B. Luttik & F. Yang (2017): Sequential Composition in the Presence of Intermediate Termination (Extended Abstract). In: K. Peters & S. Tini: Proceedings Combined 24th International Workshop on Expressiveness in Concurrency and 14th Workshop on Structural Operational Semantics, EXPRESS/SOS 2017, Berlin, Germany, 4th September 2017, EPTCS 255, pp. 1–17, doi:10.4204/EPTCS.255.1.
  4. A. Belder, B. Luttik & J. C. M. Baeten (2019): Sequencing and Intermediate Acceptance: Axiomatisation and Decidability of Bisimilarity. In: M. Roggenbach & A. Sokolova: 8th Conference on Algebra and Coalgebra in Computer Science, CALCO 2019, June 3-6, 2019, London, United Kingdom, LIPIcs 139. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 11:1–11:22, doi:10.4230/LIPIcs.CALCO.2019.11.
  5. B. Bloom (1994): When is Partial Trace Equivalence Adequate?. Formal Asp. Comput. 6(3), pp. 317–338, doi:10.1007/BF01215409.
  6. R. De Nicola & F. W. Vaandrager (1995): Three Logics for Branching Bisimulation. Journal of the ACM 42(2), pp. 458–487, doi:10.1145/201019.201032.
  7. E. A. Emerson & E. M. Clarke (1982): Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons. Science of Computer Programming 2(3), pp. 241–266, doi:10.1016/0167-6423(83)90017-5.
  8. E. A. Emerson & J.Y. Halpern (1986): `Sometimes' and `Not Never' revisited: on branching time versus linear time temporal logic. Journal of the ACM 33(1), pp. 151–178, doi:10.1145/4904.4999.
  9. R. Erkens, J. Rot & B. Luttik (2020): Up-to Techniques for Branching Bisimilarity. In: A. Chatzigeorgiou, R. Dondi, H. Herodotou, C. A. Kapoutsis, Y. Manolopoulos, G. A. Papadopoulos & F. Sikora: SOFSEM 2020: Theory and Practice of Computer Science - 46th International Conference on Current Trends in Theory and Practice of Informatics, SOFSEM 2020, Limassol, Cyprus, January 20-24, 2020, Proceedings, Lecture Notes in Computer Science 12011. Springer, pp. 285–297, doi:10.1007/978-3-030-38919-2_24.
  10. W. J. Fokkink, R. J. van Glabbeek & P. de Wind (2012): Divide and congruence: From decomposition of modal formulas to preservation of branching and η-bisimilarity. Inf. Comput. 214, pp. 59–85, doi:10.1016/j.ic.2011.10.011.
  11. W. J. Fokkink, Glabbeek R. J. van & B. Luttik (2019): Divide and congruence III: From decomposition of modal formulas to preservation of stability and divergence. Inf. Comput. 268, doi:10.1016/j.ic.2019.104435.
  12. R. J. van Glabbeek, B. Luttik & L. Spaninks (2020): Rooted Divergence-Preserving Branching Bisimilarity is a Congruence. CoRR abs/1801.01180. Available at Submitted.
  13. R. J. van Glabbeek (1993): The Linear Time – Branching Time Spectrum II; The semantics of sequential systems with silent moves (extended abstract). In: E. Best: Proceedings 4th International Conference on Concurrency Theory, CONCUR'93, Hildesheim, Germany, August 1993, LNCS 715. Springer, pp. 66–81, doi:10.1007/3-540-57208-2_6.
  14. R. J. van Glabbeek, B. Luttik & N. Trčka (2009): Branching Bisimilarity with Explicit Divergence. Fundamenta Informaticae 93(4), pp. 371–392, doi:10.3233/FI-2009-109.
  15. R. J. van Glabbeek, B. Luttik & N. Trčka (2009): Computation Tree Logic with Deadlock Detection. Logical Methods in Computer Science 5(4), doi:10.2168/LMCS-5(4:5)2009.
  16. R. J. van Glabbeek & W. P. Weijland (1996): Branching time and abstraction in bisimulation semantics. Journal of the ACM 43(3), pp. 555–600, doi:10.1145/233551.233556.
  17. S. Graf & J. Sifakis (1987): Readiness Semantics for Regular Processes with Silent Actions. In: T. Ottmann: Automata, Languages and Programming, 14th International Colloquium, ICALP87, Karlsruhe, Germany, July 13-17, 1987, Proceedings, Lecture Notes in Computer Science 267. Springer, pp. 115–125, doi:10.1007/3-540-18088-5_10.
  18. J. F. Groote, D. N. Jansen, J. J. A. Keiren & A. J. Wijs (2017): An O(m log n) Algorithm for Computing Stuttering Equivalence and Branching Bisimulation. ACM Trans. Comput. Logic 18(2), doi:10.1145/3060140.
  19. M. Lohrey, P. R. D'Argenio & H. Hermanns (2005): Axiomatising divergence. Inf. Comput. 203(2), pp. 115–144, doi:10.1016/j.ic.2005.05.007.
  20. B. Luttik & F. Yang (2020): The π-Calculus is Behaviourally Complete and Orbit-Finitely Executable. CoRR abs/1410.4512v8. Available at
  21. R. Milner (1980): A Calculus of Communicating Systems. Lecture Notes in Computer Science 92. Springer, doi:10.1007/3-540-10235-3.
  22. R. Milner (1989): A Complete Axiomatisation for Observational Congruence of Finite-State Behaviors. Inf. Comput. 81(2), pp. 227–247, doi:10.1016/0890-5401(89)90070-9.
  23. R. Milner (1990): Operational and Algebraic Semantics of Concurrent Processes. In: Jan van Leeuwen: Handbook of Theoretical Computer Science (Vol. B). MIT Press, Cambridge, MA, USA, pp. 1201–1242. Available at
  24. K. Peters (2019): Comparing Process Calculi Using Encodings. In: J. A. Pérez & J. Rot: Proceedings Combined 26th International Workshop on Expressiveness in Concurrency and 16th Workshop on Structural Operational Semantics, EXPRESS/SOS 2019, Amsterdam, The Netherlands, 26th August 2019, EPTCS 300, pp. 19–38, doi:10.4204/EPTCS.300.2.
  25. I. Phillips (1993): A Note on Expressiveness of Process Algebra. In: G. L. Burn, S. J. Gay & M. Ryan: Proceedings of the First Imperial College Department of Computing Workshop on Theory and Formal Methods, Isle of Thorns Conference Centre, Chelwood Gate, Sussex, UK, 29-31 March 1993, Workshops in Computing. Springer, pp. 260–264.

Comments and questions to:
For website issues: