F. Bartels (2004):
On Generalised Coinduction and Probabilistic Specification Formats.
PhD dissertation.
CWI, Amsterdam.
B. Bloom, S. Istrail & A. Meyer (1995):
Bisimulation can't be traced.
Journal of the ACM 42,
pp. 232–268,
doi:10.1145/200836.200876.
J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara & J. Klop (2007):
Productivity of Stream Definitions.
Fundamentals of Computation Theory,
pp. 274–287,
doi:10.1007/978-3-540-74240-1_24.
W. Fokkink (1994):
The Tyft/Tyxt Format Reduces to Tree Rules.
In: Procs. TACS,
Lecture Notes in Computer Science 789.
Springer,
pp. 440–453,
doi:10.1007/3-540-57887-0_109.
W. Fokkink & R. J. van Glabbeek (1996):
Ntyft/ntyxt rules reduce to ntree rules.
Information and Computation 126,
pp. 1–10,
doi:10.1006/inco.1996.0030.
R. J. van Glabbeek (2004):
The meaning of negative premises in transition system specifications II.
J. Log. Algebr. Program. 60-61,
pp. 229–258,
doi:10.1016/j.jlap.2004.03.007.
M. Kick (2002):
Rule Formats for Timed Processes.
In: Proc. CMCIM'02,
ENTCS 68.
Elsevier,
pp. 12–31,
doi:10.1016/S1571-0661(04)80498-5.
B. Klin (2011):
Bialgebras for structural operational semantics: An introduction.
Theoretical Computer Science 412(38),
pp. 5043–5069,
doi:10.1016/j.tcs.2011.03.023.
CMCS Tenth Anniversary Meeting.
M. Lenisa, J. Power & H. Watanabe (2004):
Category theory for operational semantics.
Theoretical Computer Science 327(1-2),
pp. 135–154,
doi:10.1016/j.tcs.2004.07.024.
S. Mac Lane (1998):
Categories for the Working Mathematician,
second edition.
Springer.
J. J. M. M. Rutten (2000):
Universal coalgebra: a theory of systems.
Theoretical Computer Science 249,
pp. 3–80,
doi:10.1016/S0304-3975(00)00056-6.
S. Staton (2008):
General Structural Operational Semantics through Categorical Logic.
In: Proc. LICS'08.
IEEE Computer Society Press,
pp. 166–177,
doi:10.1109/LICS.2008.43.
D. Turi & G. D. Plotkin (1997):
Towards a Mathematical Operational Semantics.
In: Proc. LICS'97.
IEEE Computer Society Press,
pp. 280–291,
doi:10.1109/LICS.1997.614955.