1. S. Abramsky, S.J. Gay & R. Nagarajan (1996): Deductive Program Desing: Proceedings of the 1994 Marktoberdorf International Summer School, chapter Interaction categories and the foundations of typed concurrent programming 4 Semantic Modelling. Springer.
  2. F. van Breugel (1997): Comparative Metric Semantics of Programming Languages: Nondeterminism and Recursion. Progress in Theoretical Computer Science. Birkhäuser Boston, Cambridge.
  3. F. van Breugel (2005): A Behavioural Pseudometric for Metric Labelled Transition Systems. In: M. Abadi & L. de Alfaro: Proceedings of the 16th International Conference on Concurrency Theory (CONCUR), Lecture Notes in Computer Science 3653. Springer-Verlag, San Francisco, pp. 141–155, doi:10.1007/11539452_14.
  4. G.L. Cattani (1999): Presheaf Models for Concurrency. University of Aarhus. BRICS DS-99-1.
  5. Andrea Corradini, Ugo Montanari & Francesca Rossi (1996): Graph processes. Fundamenta Informaticae 26(3), pp. 241–265, doi:10.3233/FI-1996-263402.
  6. P.J.L. Cuijpers (2013): Prefix Orders as a General Model of Dynamics. In: DCM 2013, to appear.
  7. P.J.L. Cuijpers & M.A. Reniers (2008): Lost in Translation: Hybrid-Time Flows vs Real-Time Transitions. In: Hybrid Systems Computation and Control (HSCC'08), Lecture Notes in Computer Science 4981, pp. 116–129, doi:10.1007/978-3-540-78929-1_9.
  8. M. Eisenberg (1974): Topology. Holt, Rinehart and Winston, Inc., New York.
  9. F. Heidarian F. Aarts & F.W. Vaandrager (2012): A Theory of History Dependent Abstractions for Learning Interface Automata. In: Maciej Koutny & Irek Ulidowski: Proceedings 23rd International Conference on Concurrency Theory (CONCUR), Lecture Notes in Computer Science 7454. Springer-Verlag, Newcastle upon Tyne, UK, pp. 240–255, doi:10.1007/978-3-642-32940-1_18.
  10. Thomas A. Henzinger (2010): From Boolean to quantitative notions of correctness. In: Manuel V. Hermenegildo & Jens Palsberg: Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010. ACM, pp. 157–158, doi:10.1145/1706299.1706319.
  11. M. Huth (2005): Labelled transition systems as a Stone space. Logical Methods in Computer Science 1(1:1), pp. 1–28, doi:10.2168/LMCS-1(1:1)2005.
  12. André Joyal, M Nielsen & Glynn Winskel (1993): Bisimulation and open maps. In: Logic in Computer Science, 1993. LICS'93., Proceedings of Eighth Annual IEEE Symposium on. IEEE, pp. 418–427, doi:10.1109/LICS.1993.287566.
  13. J.L. Kelley (1955): General Topology. D. van Nostrand Company, inc., New York.
  14. K. Kunen (1988): Set Theory: An Introduction to Independence Proofs, third edition, Studies In Logic and the Foundations of Mathematics 102. Elsevier Science B.V..
  15. F.W. Lawvere & S.H. Schanuel (1997): Conceptual Mathematics: a first introduction to categories. Cambridge University Press.
  16. S. MacLane (1971): Categories for the Working Mathematician. Springer-Verlag.
  17. Ugo Montanari & Marco Pistore (1997): An Introduction to History Dependent Automata. Electronic Notes in Theoretical Computer Science 10(0), pp. 170 – 188, doi:10.1016/S1571-0661(05)80696-6.
  18. C. Morgan (2009): How to Brew-up a Refinement Ordering. Electronic Notes in Theoretical Computer Science 259(0), pp. 123 – 141, doi:10.1016/j.entcs.2009.12.021.
  19. D. Perrin & J-E. Pin (2004): Infinite Words Automata, Semigroups, Logic and Games. Pure and Applied Mathematics 141. Elsevier.
  20. Glynn Winskel & Mogens Nielsen (1997): Presheaves as transition systems. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 29, pp. 129–140.
  21. M. Ying (2001): Topology in Process Calculus: Approximate Correctness and Infinite Evolution of Concurrent Programs. Springer-Verlag, doi:10.1007/978-1-4613-0123-3.

Comments and questions to:
For website issues: