1. S. Abramsky (1987): Observation equivalence as a testing equivalence. Theoretical Computer Science 53, pp. 225–241, doi:10.1016/0304-3975(87)90065-X.
  2. J.C.M. Baeten & W.P. Weijland (1990): Process Algebra. Cambridge Tracts in Theoretical Computer Science 18. Cambridge University Press.
  3. M. Baldamus, J. Parrow & B. Victor (2004): Spi Calculus Translated to π-Calculus Preserving May-Tests. In: Proceedings 19th IEEE Symposium on Logic in Computer Science (LICS 2004), July 2004, Turku, Finland. IEEE Computer Society, pp. 22–31, doi:10.1109/LICS.2004.1319597.
  4. M. Baldamus, J. Parrow & B. Victor (2005): A Fully Abstract Encoding of theıt pi-Calculus with Data Terms. In: L. Caires, G.F. Italiano, L. Monteiro, C. Palamidessi & M. Yung: Proceedings 32nd International Colloquium on Automata, Languages and Programming, ICALP 2005, Lisbon, Portugal, July 2005, LNCS 3580. Springer, pp. 1202–1213, doi:10.1007/11523468_97.
  5. B. Bloom, W.J. Fokkink & R.J. van Glabbeek (2004): Precongruence Formats for Decorated Trace Semantics. Transactions on Computational Logic 5(1), pp. 26–78, doi:10.1145/963927.963929. Available at
  6. M. Boreale (1998): On the Expressiveness of Internal Mobility in Name-Passing Calculi. Theor. Comput. Sci. 195(2), pp. 205–226, doi:10.1016/S0304-3975(97)00220-X.
  7. G. Boudol (1985): Notes on algebraic calculi of processes. In: K. Apt: Logics and Models of Concurrent Systems. Springer, pp. 261–303. NATO ASI Series F13.
  8. S.D. Brookes, C.A.R. Hoare & A.W. Roscoe (1984): A theory of communicating sequential processes. Journal of the ACM 31(3), pp. 560–599, doi:10.1145/828.833.
  9. S.D. Brookes & A.W. Roscoe (1985): An improved failures model for communicating processes. In: S.D. Brookes, A.W. Roscoe & G. Winskel: Seminar on Concurrency, LNCS 197. Springer, pp. 281–305, doi:10.1007/3-540-15670-4_14.
  10. N. Busi, M. Gabbrielli & G. Zavattaro (2003): Replication vs. Recursive Definitions in Channel Based Calculi. In: J.C.M. Baeten, J.K. Lenstra, Parrow J & G.J. Woeginger: Proceedings 30th International Colloquium on Automata, Languages and Programming, ICALP 2003, Eindhoven, The Netherlands, LNCS 2719. Springer, pp. 133–144, doi:10.1007/3-540-45061-0_12.
  11. N. Busi, M. Gabbrielli & G. Zavattaro (2009): On the expressive power of recursion, replication and iteration in process calculi. Mathematical Structures in Computer Science 19(6), pp. 1191–1222, doi:10.1017/S096012950999017X.
  12. D. Cacciagrano, F. Corradini, J. Aranda & F.D. Valencia (2008): Linearity, Persistence and Testing Semantics in the Asynchronous Pi-Calculus. Electr. Notes Theor. Comput. Sci. 194(2), pp. 59–84, doi:10.1016/j.entcs.2007.11.006.
  13. D. Cacciagrano, F. Corradini & C. Palamidessi (2007): Separation of synchronous and asynchronous communication via testing. Theor. Comput. Sci. 386(3), pp. 218–235, doi:10.1016/j.tcs.2007.07.009.
  14. M. Carbone & S. Maffeis (2003): On the Expressive Power of Polyadic Synchronisation in pi-calculus. Nord. J. Comput. 10(2), pp. 70–98.
  15. L. Cardelli, G. Ghelli & A.D. Gordon (2002): Types for the Ambient Calculus. Inf. Comput. 177(2), pp. 160–194, doi:10.1006/inco.2001.3121.
  16. L. Cardelli & A.D. Gordon (2000): Mobile ambients. Theor. Comput. Sci. 240(1), pp. 177–213, doi:10.1016/S0304-3975(99)00231-5.
  17. R.J. van Glabbeek (1993): The Linear Time – Branching Time Spectrum II; The semantics of sequential systems with silent moves (extended abstract). In: E. Best: Proceedings CONCUR'93, 4th International Conference on Concurrency Theory, Hildesheim, Germany, August 1993, LNCS 715. Springer, pp. 66–81, doi:10.1007/3-540-57208-2_6.
  18. R.J. van Glabbeek (1994): On the expressiveness of ACP (extended abstract). In: A. Ponse, C. Verhoef & S.F.M. van Vlijmen: Proceedings First Workshop on the Algebra of Communicating Processes, ACP94, Utrecht, The Netherlands, May 1994, Workshops in Computing. Springer, pp. 188–217. Available at
  19. Daniele Gorla (2010): A taxonomy of process calculi for distribution and mobility. Distributed Computing 23(4), pp. 273–299, doi:10.1007/s00446-010-0120-6.
  20. Daniele Gorla (2010): Towards a unified approach to encodability and separation results for process calculi. Information and Computation 208(9), pp. 1031–1053, doi:10.1016/j.ic.2010.05.002.
  21. B. Haagensen, S. Maffeis & I. Phillips (2008): Matching Systems for Concurrent Calculi. Electr. Notes Theor. Comput. Sci. 194(2), pp. 85–99, doi:10.1016/j.entcs.2007.11.004.
  22. M. Hennessy & G.D. Plotkin (1980): A term model for CCS. In: P. Dembiński: Proc. 9th Symposium on Mathematical Foundations of Computer Science, LNCS 88. Springer, pp. 261–274, doi:10.1007/BFb0022510.
  23. C.A.R. Hoare (1980): Communicating sequential processes. In: R.M. McKeag & A.M. Macnaghten: On the construction of programs – an advanced course. Cambridge University Press, pp. 229–254.
  24. C.A.R. Hoare (1985): Communicating Sequential Processes. Prentice Hall, Englewood Cliffs.
  25. R. Milner (1990): Operational and algebraic semantics of concurrent processes. In: J. van Leeuwen: Handbook of Theoretical Computer Science, chapter 19. Elsevier Science Publishers B.V. (North-Holland), pp. 1201–1242. Alternatively see Communication and Concurrency, Prentice-Hall, Englewood Cliffs, 1989, of which an earlier version appeared as A Calculus of Communicating Systems, LNCS 92, Springer, 1980.
  26. U. Nestmann (2000): What is a "Good" Encoding of Guarded Choice?. Inf. Comput. 156(1-2), pp. 287–319, doi:10.1006/inco.1999.2822.
  27. U. Nestmann (2006): Welcome to the Jungle: A Subjective Guide to Mobile Process Calculi. In: C. Baier & H. Hermanns: Proceedings 17th International Conference on Concurrency Theory, CONCUR 2006, Bonn, Germany, August 2006, LNCS 4137. Springer, pp. 52–63, doi:10.1007/11817949_4.
  28. U. Nestmann & B.C. Pierce (2000): Decoding Choice Encodings. Inf. Comput. 163(1), pp. 1–59, doi:10.1006/inco.2000.2868.
  29. E.-R. Olderog & C.A.R. Hoare (1986): Specification-oriented semantics for communicating processes. Acta Informatica 23, pp. 9–66, doi:10.1007/BF00268075.
  30. C. Palamidessi (2003): Comparing The Expressive Power Of The Synchronous And Asynchronous Pi-Calculi. Mathematical Structures in Computer Science 13(5), pp. 685–719, doi:10.1017/S0960129503004043.
  31. C. Palamidessi, V.A. Saraswat, F.D. Valencia & B Victor (2006): On the Expressiveness of Linearity vs Persistence in the Asychronous Pi-Calculus. In: Proceedings 21th IEEE Symposium on Logic in Computer Science (LICS 2006), August 2006, Seattle, WA, USA. IEEE Computer Society, pp. 59–68, doi:10.1109/LICS.2006.39.
  32. C. Palamidessi & F.D. Valencia (2005): Recursion vs Replication in Process Calculi: Expressiveness. Bulletin of the EATCS 87, pp. 105–125.
  33. J. Parrow (2000): Trios in concert. In: G.D. Plotkin, C. Stirling & M. Tofte: Proof, Language, and Interaction, Essays in Honour of Robin Milner. The MIT Press, pp. 623–638.
  34. J. Parrow (2008): Expressiveness of Process Algebras. Electr. Notes Theor. Comput. Sci. 209, pp. 173–186, doi:10.1016/j.entcs.2008.04.011.
  35. K. Peters & U. Nestmann (2012): Is It a "Good" Encoding of Mixed Choice?. In: L. Birkedal: Proceeding 15th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2012; held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March/April 2012, LNCS 7213. Springer, pp. 210–224, doi:10.1007/978-3-642-28729-9_14.
  36. K. Peters, J.-W. Schicke & U. Nestmann (2011): Synchrony vs Causality in the Asynchronous Pi-Calculus. In: B. Luttik & F. Valencia: Proceedings 18th International Workshop on Expressiveness in Concurrency, EPTCS 64, pp. 89–103, doi:10.4204/EPTCS.64.7.
  37. I. Phillips & M.G. Vigliotti (2006): Leader election in rings of ambient processes. Theor. Comput. Sci. 356(3), pp. 468–494, doi:10.1016/j.tcs.2006.02.004.
  38. I. Phillips & M.G. Vigliotti (2008): Symmetric electoral systems for ambient calculi. Inf. Comput. 206(1), pp. 34–72, doi:10.1016/j.ic.2007.08.005.
  39. R. de Simone (1985): Higher-level synchronising devices in Meije-SCCS. Theoretical Computer Science 37, pp. 245–267, doi:10.1016/0304-3975(85)90093-3.
  40. C. Stirling (1987): Modal logics for communicating systems. Theoretical Computer Science 49, pp. 311–347, doi:10.1016/0304-3975(87)90012-0.
  41. F.W. Vaandrager (1993): Expressiveness Results for Process Algebras. In: J.W. de Bakker, W.P. de Roever & G. Rozenberg: Proceedings REX Workshop on Semantics: Foundations and Applications, Beekbergen, The Netherlands, June 1992, LNCS 666. Springer, pp. 609–638, doi:10.1007/3-540-56596-5_49.
  42. C. Versari, N. Busi & R. Gorrieri (2009): An expressiveness study of priority in process calculi. Mathematical Structures in Computer Science 19(6), pp. 1161–1189, doi:10.1017/S0960129509990168.
  43. M.G. Vigliotti, I. Phillips & C. Palamidessi (2007): Tutorial on separation results in process calculi via leader election problems. Theor. Comput. Sci. 388(1-3), pp. 267–289, doi:10.1016/j.tcs.2007.09.001.
  44. D.J. Walker (1990): Bisimulation and divergence. Information and Computation 85(2), pp. 202–241, doi:10.1016/0890-5401(90)90048-M.

Comments and questions to:
For website issues: