1. Andrea Asperti (2008): The Intensional Content of Rice's Theorem. In: Proceedings of the 35th Annual ACM SIGPLAN - SIGACT Symposium on Principles of Programming Languages (POPL 2008), doi:10.1145/1328438.1328455.
  2. Garrett Birkhoff (1940): Lattice Theory. Colloquium Publications 25. American Mathematical Society.
  3. George Grätzer (2003): General Lattice Theory, second edition. Birkhäuser.
  4. Neil D. Jones (1997): Computability and Complexity, from a Programming Perspective. MIT press.
  5. J.-Y. Moyen & J. G. Simonsen (2016): More intensional versions of Rice's Theorem. In: D. Mazza: Developments in Implicit Computational Complexity, DICE'16, Eindhoven, Netherlands.
  6. John R. Myhill & John Cedric Shepherdson (1955): Effective operations on partial recursive functions. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 1, pp. 310–317, doi:10.1002/malq.19550010407.
  7. Anil Nerode (1958): Linear Automaton Transformations. Proceedings of the American Mathematical Society 9(4), pp. pp. 541–544, doi:10.1090/S0002-9939-1958-0135681-9. Available at
  8. Øystein Ore (1942): Theory of equivalence relations. Duke Mathematical Journal 9(3), pp. 573–627, doi:10.1215/S0012-7094-42-00942-6.
  9. Christos H. Papadimitriou (1994): Computational Complexity. Addison-Wesley.
  10. Henry Gordon Rice (1953): Classes of Recursively Enumerable Sets and Their Decision Problems.. Transactions of the American Mathemathical Society 74, pp. 358–366, doi:10.1090/S0002-9947-1953-0053041-6.
  11. Ivan Rival & Miriam Stanford (1992): Algebraic Aspects of Partition Lattices. In: Neil White: Matroid Applications, Encyclopedia of Mathematics and its Applications 40. Cambridge University Press, pp. 106–122, doi:10.1017/CBO9780511662041.006.
  12. Normann Shapiro (1956): Degrees of computability. Transactions of the AMS 82, pp. 281–299, doi:10.1090/S0002-9947-1956-0085187-3.

Comments and questions to:
For website issues: