1. Stephen Bellantoni & Stephen A. Cook (1992): A New Recursion-Theoretic Characterization of the Polytime Functions. Computational Complexity 2, pp. 97–110, doi:10.1007/BF01201998.
  2. R. Cartwright, P.L. Curien & M. Felleisen (1994): Fully Abstract Semantics for Observably Sequential Languages. Information and Computation 111(2), pp. 297 – 401, doi:10.1006/inco.1994.1047.
  3. A. Cobham (1965): The intrinsic computational difficulty of functions. In: Yehoshua Bar-Hillel: Logic, Methodology and Philosophy of Science: Proc. 1964 Intl. Congress (Studies in Logic and the Foundations of Mathematics). North-Holland Publishing, pp. 24–30.
  4. S.A. Cook (1992): Computability and complexity of higher type functions. In: Logic from computer science (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ. 21. Springer, New York, pp. 51–72, doi:10.1007/978-1-4612-2822-6_3.
  5. S.A. Cook & B.M. Kapron (1990): Characterizations of the basic feasible functionals of finite type. In: Feasible mathematics (Ithaca, NY, 1989), Progr. Comput. Sci. Appl. Logic 9. Birkhäuser, pp. 71–96, doi:10.1007/978-1-4612-3466-1_5.
  6. S.A. Cook & A. Urquhart (1993): Functional interpretations of feasibly constructive arithmetic. Ann. Pure Appl. Logic 63(2), pp. 103–200, doi:10.1016/0168-0072(93)90044-E.
  7. Martin Hofmann (2003): Linear types and non-size-increasing polynomial time computation. Inf. Comput. 183(1), pp. 57–85, doi:10.1016/S0890-5401(03)00009-9.
  8. A. Ignjatovic & A. Sharma (2004): Some applications of logic to feasibility in higher types. ACM TOCL 5(2), pp. 332–350, doi:10.1145/976706.976713.
  9. B.M. Kapron & S.A. Cook (1996): A new characterization of type-2 feasibility. SIAM J. Comput. 25(1), pp. 117–132, doi:10.1137/S0097539794263452.
  10. B.M. Kapron & F. Steinberg (2018): Type-two polynomial-time and restricted lookahead. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (Oxford, UK), 2018. ACM, New York, pp. 579–598, doi:10.1145/3209108.3209124.
  11. Bruce M. Kapron (1991): Feasible Computation in Higher Types. Technical Report 249/91. Computer Science Department, University of Toronto.
  12. Akitoshi Kawamura & Florian Steinberg (2017): Polynomial Running Times for Polynomial-Time Oracle Machines. In: 2nd International Conference on Formal Structures for Computation and Deduction, FSCD 2017, September 3-9, 2017, Oxford, UK, pp. 23:1–23:18, doi:10.4230/LIPIcs.FSCD.2017.23.
  13. Daniel Leivant (1991): A Foundational Delineation of Computational Feasiblity. In: Proceedings of the Sixth Annual IEEE Symposium on Logic in Computer Science (Amsterdam, The Netherlands), 1991. IEEE Computer Society, pp. 2–11, doi:10.1109/LICS.1991.151625.
  14. K. Mehlhorn (1976): Polynomial and abstract subrecursive classes. J. Comp. Sys. Sci. 12(2), pp. 147–178, doi:10.1016/S0022-0000(76)80035-9.
  15. Raphael M. Robinson (1947): Primitive recursive functions. Bull. Amer. Math. Soc. 53(10), pp. 925–942, doi:10.1090/S0002-9904-1947-08911-4.
  16. Anil Seth (1993): Some desirable conditions for feasible functionals of type 2. In: Eighth Annual IEEE Symposium on Logic in Computer Science (Montreal, PQ, 1993). IEEE Comput. Soc. Press, Los Alamitos, CA, pp. 320–331, doi:10.1109/LICS.1993.287576.

Comments and questions to:
For website issues: