1. Thorsten Altenkirch & Jonathan J. Grattage (2005): A functional quantum programming language. In: Proceedings of LICS-2005. IEEE Computer Society, pp. 249–258, doi:10.1109/LICS.2005.1.
  2. Pablo Arrighi & Alejandro D\'ıaz-Caro (2011): Scalar System F for Linear-Algebraic λ-Calculus: Towards a Quantum Physical Logic. In: Bob Coecke, Prakash Panangaden & Peter Selinger: Proceedings of QPL-2009, Electronic Notes in Theoretical Computer Science 270/2. Elsevier, pp. 219–229, doi:10.1016/j.entcs.2011.01.033.
  3. Pablo Arrighi & Gilles Dowek (2004): A Computational Definition of the Notion of Vectorial Space. In: Narciso Martí-Oliet: Proceedings of WRLA-2004, Electronic Notes in Theoretical Computer Science 117. Elsevier, pp. 249–261, doi:10.1016/j.entcs.2004.06.013.
  4. Pablo Arrighi & Gilles Dowek (2008): Linear-algebraic lambda-calculus: higher-order, encodings, and confluence. In: Andrei Voronkov: Proceedings of RTA-2008, Lecture Notes in Computer Science 5117. Springer, pp. 17–31, doi:10.1007/978-3-540-70590-1_2.
  5. Alejandro D\'ıaz-Caro, Simon Perdrix, Christine Tasson & Beno^ıt Valiron (2011): Call by value, call by name and the vectorial behaviour of algebraic λ-calculus. (Submitted)
  6. Thomas Ehrhard (2005): Finiteness spaces. Mathematical Structures in Computer Science 15(4), pp. 615–646, doi:10.1017/S0960129504004645.
  7. Thomas Ehrhard (2010): A Finiteness Structure on Resource Terms. In: Proceedings of LICS-2010. IEEE Computer Society, pp. 402–410, doi:10.1109/LICS.2010.38.
  8. Thomas Ehrhard & Laurent Regnier (2003): The differential lambda-calculus. Theoretical Computer Science 309(1), pp. 1–41, doi:10.1016/S0304-3975(03)00392-X.
  9. John Hatcliff & Olivier Danvy (1994): A Generic Account of Continuation-Passing Styles. In: Proceedings of the Twenty-first Annual ACM Symposium on Principles of Programming Languages. ACM Press, pp. 458–471.
  10. Eugenio Moggi (1989): Computational Lambda-Calculus and Monads. In: Proceedings of LICS-1989. IEEE Computer Society, pp. 14–23.
  11. Simon Perdrix (2008): Quantum Entanglement Analysis Based on Abstract Interpretation. In: Proceedings of SAS-2008, pp. 270–282, doi:10.1007/978-3-540-69166-2_18.
  12. Gordon D. Plotkin (1975): Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science 1(2), pp. 125–159.
  13. Amr Sabry & Philip Wadler (1996): A Reflection on Call-by-Value. ACM Transactions on Programming Languages and Systems 19, pp. 13–24, doi:10.1145/232627.232631.
  14. Peter Selinger (2004): Towards a quantum programming language. In: Mathematical Structures in Computer Science, pp. 527–586, doi:10.1017/S0960129504004256.
  15. Peter Selinger & Beno^ıt Valiron (2006): A lambda calculus for quantum computation with classical control. Mathematical Structures in Computer Science 16(3), pp. 527–552, doi:10.1017/S0960129506005238.
  16. Benoît Valiron (2010): Semantics of a typed algebraic lambda-calculus. In: S. Barry Cooper, Prakash Panangaden & Elham Kashefi: Proceedings DCM-2010, Electronic Proceedings in Theoretical Computer Science 26. Open Publishing Association, pp. 147–158, doi:10.4204/EPTCS.26.14.
  17. Lionel Vaux (2007): On Linear Combinations of Lambda-Terms. In: Franz Baader: Proceedings of RTA-2007, Lecture Notes in Computer Science 4533. Springer, pp. 374–388, doi:10.1007/978-3-540-73449-9_28.
  18. Lionel Vaux (2009): The algebraic lambda calculus. Mathematical Structures in Computer Science 19(5), pp. 1029–1059, doi:10.1017/S0960129509990089.
  19. William K. Wootters & Wojciech .H. Zurek (1982): A Single Quantum Cannot be Cloned. Nature 299, pp. 802–803, doi:10.1038/299802a0.

Comments and questions to:
For website issues: