1. A. Halász et al. (2007): Analysis of lactose metabolism in E.coli using reachability analysis of hybrid systems. Systems Biology, IET 1(2), pp. 130 –148, doi:10.1049/iet-syb:20060035.
  2. E. Asarin et al. (2006): Recent progress in continuous and hybrid reachability analysis. In: Computer Aided Control System Design, IEEE International Conference on Control Applications, pp. 1582 –1587, doi:10.1109/CACSD-CCA-ISIC.2006.4776877.
  3. G. Batt et al. (2008): Symbolic reachability analysis of genetic regulatory networks using discrete abstractions. Automatica 44, pp. 982–989, doi:10.1016/j.automatica.2007.08.004.
  4. G. Batt et al. (2008): Temporal Logic Analysis of Gene Networks under Parameter Uncertainty. IEEE Transactions of Automatic Control 53, pp. 215–229, doi:10.1109/TAC.2007.911330.
  5. H. Kitano et al. (2001): Foundations of Systems Biology. The MIT Press.
  6. J. Barnat et al. (2009): Computational Analysis of Large-Scale Multi-Affine ODE Models. In: 2009 International Workshop on High Performance Computational Systems Biology (HiBi 2009). IEEE Computer Society Press, pp. 81–90.
  7. J. Tyson et al. (1996): Chemical kinetic theory: understanding cell-cycle regulation. Trends in Biochemical Sciences 21, pp. 89–96.
  8. L. Doyen et al. (2005): Automatic Rectangular Refinement of Affine Hybrid Systems. In: Formal Modeling and Analysis of Timed Systems, LNCS 3829. Springer Berlin / Heidelberg, pp. 144–161, doi:10.1007/11603009_13.
  9. P.T. Monteiro et al. (2008): Temporal Logic Patterns for Querying Qualitative Models of Genetic Regulatory Networks. In: ECAI, Frontiers in Artificial Intelligence and Applications 178. IOS Press, pp. 229–233, doi:10.3233/978-1-58603-891-5-229.
  10. S. Jha et al. (2009): A Bayesian Approach to Model Checking Biological Systems. In: CMSB'09, LNCS. Springer, pp. 218–234, doi:10.1007/978-3-642-03845-7_15.
  11. G. Antoine & G. Pappas (2006): Verification Using Simulation. In: HSCC'06, LNCS 3927. Springer, pp. 272–286, doi:10.1007/11730637_22.
  12. E. Asarin, T. Dang & A. Girard (2007): Hybridization methods for the analysis of nonlinear systems. Acta Inf. 43, pp. 451–476, doi:10.1007/s00236-006-0035-7.
  13. J. Barnat, L. Brim & D. Šafránek (2010): High-performance analysis of biological systems dynamics with the DiVinE model checker. Brief. in Bioinformatics 11, pp. 301–312, doi:10.1093/bib/bbp074.
  14. C. Belta & L.C. Habets (2006): Controlling a class of nonlinear systems on rectangles. IEEE Transactions on Automatic Control 51(11), pp. 1749–1759, doi:10.1109/TAC.2006.884957.
  15. S. Berman, Á. Halász & V. Kumar (2007): MARCO: a reachability algorithm for multi-affine systems with applications to biological systems. In: HSCC'07, LNCS. Springer-Verlag, Berlin, Heidelberg, pp. 76–89, doi:10.1007/978-3-540-71493-4_9.
  16. L. Brim, J. Fabrikova, S. Drazan & D. Safranek (2011): Reachability in Biochemical Dynamical Systems by Quantitative Discrete Approximation. Technical Report arXiv:1107.5924v1. Masaryk University. Full version of COMPMOD 2011 paper..
  17. E. M. Clarke, E. A. Emerson & A. P. Sistla (1986): Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8, pp. 244–263, doi:10.1145/5397.5399.
  18. T. Dang, C. Le Guernic & O. Maler (2009): Computing Reachable States for Nonlinear Biological Models. In: CMSB'09, LNCS 5688. Springer Berlin / Heidelberg, pp. 126–141, doi:10.1016/j.tcs.2011.01.014.
  19. M. Feinberg (1987): Chemical reaction network structure and the stability of complex isothermal reactors I. The deficiency zero and the deficiency one theorems. Chemical Engineering Science 42, pp. 2229–2268.
  20. J. Fisher & T. A. Henzinger (2007): Executable cell biology. Nature biotechnology 25(11), pp. 1239–1249, doi:10.1038/nbt1356.
  21. L.C. Habets & J. H. van Schuppen (2004): A control problem for affine dynamical systems on a full-dimensional polytope. Automatica 40(1), pp. 21 – 35, doi:10.1016/j.automatica.2003.08.001.
  22. Philip Hartman (2002): Ordinary Differential Equations, 2nd edition. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
  23. F. Horn & R. Jackson (1972): General mass action kinetics. Archive for Rational Mechanics and Analysis 47, pp. 81–116, doi:10.1007/BF00251225.
  24. M. Kloetzer & C. Belta (2010): Reachability analysis of multi-affine systems. Transactions of the Institute of Measurement and Control 32, pp. 445–467, doi:10.1007/11730637_27.
  25. F. J. Krambeck (1970): The mathematical structure of chemical kinetics in homogeneous single-phase systems. Archive for Rational Mechanics and Analysis 38, pp. 317–347, doi:10.1007/BF00251527.
  26. H. Ma, F. Boogerd & I. Goryanin (2009): Modelling nitrogen assimilation of Escherichia coli at low ammonium concentration. Journal of Biotechnology 144, pp. 175–83, doi:10.1016/j.jbiotec.2009.09.003.
  27. O. Maler & G. Batt (2008): Approximating Continuous Systems by Timed Automata. In: Proceedings of the 1st international workshop on Formal Methods in Systems Biology, FMSB '08. Springer, pp. 77–89, doi:10.1007/978-3-540-68413-8_6.
  28. G. F. Oster & A. S. Perelson (1974): Chemical reaction dynamics. Archive for Rational Mechanics and Analysis 55, pp. 230–274, doi:10.1007/BF00281751.
  29. A. Rizk, G. Batt, F. Fages & S. Soliman (2009): A general computational method for robustness analysis with applications to synthetic gene networks. Bioinformatics 25, pp. i169–i178, doi:10.1093/bioinformatics/btp200.
  30. Walter Rudin (1974): Real and complex analysis, 2nd edition. McGraw-Hill New York.

Comments and questions to:
For website issues: