SBML website http://www.sbml.org P.A. Abrahamsson 2010 Potential benefits of intermittent androgen suppression therapy in the treatment of prostate cancer: a systematic review of literature. Eur Urol 57 49–59 10.1016/j.eururo.2009.07.049 M. Bernardo R. Gorrieri 1998 A tutorial on EMPA: a theory of concurrent processes with nondeterminism, priorities, probabilities and time Theoret. Comput. Sci. 202 1–54 10.1016/S0304-3975(97)00127-8 Supplementary Material http://www.dmi.units.it/~bortolu/files/COMPMOD2011supp.pdf L. Bortolussi A. Policriti 2008 Modeling Biological Systems in Concurrent Constraint Programming Constraints 13 1 10.1007/s10601-007-9034-8 L. Bortolussi A. Policriti 2009 Dynamical systems and stochastic programming — from Ordinary Differential Equations and back T. Comp. Sys. Bio. XI 216-267 10.1007/978-3-642-04186-0_11 L. Bortolussi A. Policriti 2009 Hybrid Semantics of Stochastic Programs with Dynamic Reconfiguration Proc. of CompMod 10.4204/EPTCS.6.5 L. Bortolussi A. Policriti 2009 Tales of Spatiality in stochastic Concurrent Constraint Programming Proc. of Bio-Logic L. Bortolussi A. Policriti 2010 Hybrid Dynamics of Stochastic Programs Theor. Comp. Sc. 411 20 2052-2077 10.1016/j.tcs.2010.02.008 M. K. Brawer 2006 Hormonal Therapy for Prostate Cancer Rev Urol 8 S35–S47 F. Ciocchetta 2009 Bio-PEPA with Events T. Comp. Sys. Bio. 11 45–68 10.1007/978-3-642-04186-0_3 F. Ciocchetta J. Hillston 2008 Formal methods for computational systems biology Process algebras in systems biology 265–312 Springer-Verlag 10.1007/978-3-540-68894-5_8 F. Ciocchetta J. Hillston 2009 Bio-PEPA: A framework for the modelling and analysis of biological systems Theor. Comp. Sc. 410 33-34 3065 – 3084 10.1016/j.tcs.2009.02.037 M.H.A. Davis 1993 Markov Models and Optimization Chapman & Hall M. Ajmone Marsan G. Balbo G. Conte S. Donatelli G. Franceschinis 1995 Modelling with Generalized Stochastic Petri Nets Wiley D. Gillespie 2000 The chemical Langevin equation Journal of Chemical Physics 113 1 297–306 10.1063/1.481811 D.T. Gillespie 1977 Exact Stochastic Simulation of Coupled Chemical Reactions J. of Phys. Chem. 81 25 10.1021/j100540a008 H. Hermanns U. Herzog J.P. Katoen 2002 Process algebra for performance evaluation Theor. Comp. Sci. 274 1-2 43–87 10.1016/S0304-3975(00)00305-4 A.M. Ideta G. Tanaka T. Takeuchi K. Aihara 2008 A mathematical model of intermittent androgen suppression for prostate cancer Nonlinear Science 18 593–614 10.1007/s00332-008-9031-0 T. L. Jackson 2004 A mathematical model of prostate tumor growth and androgen-independent relapse Disc Cont Dyn Sys B 4 187–201 10.3934/dcdsb.2004.4.187 S.K. Jha E.M. Clarke C.J. Langmead A. Legay A. Platzer P. Zuliani 2009 A Bayesian Approach to Model Checking Biological Systems Proc. of the CMSB 218–234 10.1007/978-3-642-03845-7_15 P. Lecca O. Kahramanogullari D. Morpurgo C. Priami R. Soo 2011 Modelling the tumor shrinkage pharmacodynamics with BlenX Proc. of ICCABS 10.1109/UKSIM.2011.24 T. Mazza M. Cavaliere 2009 Cell Cycle and Tumor Growth in Membrane Systems with Peripheral Proteins Electron. Notes Theor. Comput. Sci. 227 127–141 10.1016/j.entcs.2008.12.108 C.J. Mode 2005 Semi-Markov Processes John Wiley & Sons, Ltd J. R. Norris 1997 Markov Chains Cambridge University Press A.R. Rao H.G. Motiwala O.M.A. Karim 2008 The discovery of Prostate-Specific Antigen BJU Int. 101 5–10 10.1111/j.1464-410X.2007.07138.x D. Skulj 2009 Discrete time Markov chains with interval probabilities Int. J. Approx. Reasoning 50 8 1314–1329 10.1016/j.ijar.2009.06.007 G. Tanaka Y. Hirata S.L. Goldenberg N. Bruchovsky K. Aihara 2010 Mathematical modelling of prostate cancer growth and its application to hormone therapy Phyl Trans Royal Soc A 368 5029–5044 10.1098/rsta.2010.0221 D. J. Wilkinson 2006 Stochastic Modelling for Systems Biology Chapman & Hall