1. D. Angluin (1980): Local and Global Properties in Networks of Processors. In: Proceedings of the 28th Symposium on Theoretical Aspects of Computer Science (STACS), pp. 82–93, doi:10.1145/800141.804655.
  2. D. Angluin, J. Aspnes, D. Eisenstat & E. Ruppert: (2007): The computational power of population protocols. Distributed Computing 20(4), pp. 279–304, doi:10.1007/s00446-007-0040-2.
  3. P.P. Chaudhuri, D.R. Chowdhury, S. Nandi S & S. Chattopadhyay (1997): Additive cellular automata: Theory and applications 1. IEEE Computer Society Press: Los Alamitos.
  4. N. Fatès (2011): Stochastic Cellular Automata Solve the Density Classification Problem with an Arbitrary Precision. In: Proceedings of the 28th Symposium on Theoretical Aspects of Computer Science (STACS), pp. 284–295, doi:10.4230/LIPIcs.STACS.2011.284.
  5. H. Fuk\'s (1997): Solution of the density classification problem with two cellular automata rules. Physical Review E 55(3), pp. R2081–R2084, doi:10.1103/PhysRevE.55.R2081.
  6. D. Griffeath & C. Moore (2003): New constructions in cellular automata. Oxford Univ. Press - Santa Fe Institute Studies on the Sciences of Complexity.
  7. S.O. Haykin (2008): Neural networks and learning machines, 3rd edition. Prentice Hall.
  8. J.E. Hopcroft, R. Motwani & J.D. Ullman (2006): Introduction to Automata Theory, Languages, and Computation, 3rd edition. Addison-Wesley.
  9. K.M. Lee, H. Xu & H.F. Chau (2001): Parity problem with a cellular automaton solution. Physical Review E 64(2), pp. 026702/1–026702/4, doi:10.1103/PhysRevE.64.026702.
  10. C. Lenzen, Y.A. Oswald & R. Wattenhofer (2008): What can be approximated locally?: case study: dominating sets in planar graphs. In: Proc. 20th Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 46–54, doi:10.1145/1378533.1378540.
  11. C.L.M. Martins & P.P.B. de Oliveira (2009): Improvement of a result on sequencing elementary cellular automata rules for solving the parity problem. Electronic Notes in Theoretical Computer Science 252, pp. 103–119, doi:10.1016/j.entcs.2009.09.017.
  12. P.P.B. de Oliveira, J.C. Bortot & G.M.B. Oliveira (2006): The best currently known class of dynamically equivalent cellular automata rules for density classification. Neurocomputing 70(1-3), pp. 35–43, doi:10.1016/j.neucom.2006.07.003.
  13. D. Peleg (2000): Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Mathematics and Applications.
  14. M. Sipper (1998): Computing with cellular automata: Three cases for nonuniformity. Physical Review E 57(3), pp. 3589–3592, doi:10.1103/PhysRevE.57.3589.
  15. B. Voorhees (2009): Additive cellular automata. In: R.A. Meyers: Encyclopedia of Complexity and Systems Science. Elsevier, pp. Entry 101, 17 pages, doi:10.1007/978-0-387-30440-3_4.
  16. D. Wolz & P.P.B. de Oliveira (2008): Very effective evolutionary techniques for searching cellular automata rule spaces. Journal of Cellular Automata 3(4), pp. 289–312.

Comments and questions to:
For website issues: