1. Liang-Chieh Chen, George Papandreou, Florian Schroff & Hartwig Adam (2017): Rethinking Atrous Convolution for Semantic Image Segmentation. CoRR abs/1706.05587, doi:10.48550/arXiv.1706.05587. ArXiv:1706.05587.
  2. Jang Hyun Cho & Bharath Hariharan (2019): On the Efficacy of Knowledge Distillation. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4793–4801, doi:10.1109/ICCV.2019.00489.
  3. Xin Dong, Shangyu Chen & Sinno Jialin Pan (2017): Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain Surgeon. CoRR abs/1705.07565, doi:10.48550/arXiv.1705.07565. ArXiv:1705.07565.
  4. M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn & A. Zisserman: The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results.
  5. Eduardo Fernandez-Moral, Renato Martins, Denis Wolf & Patrick Rives (2018): A New Metric for Evaluating Semantic Segmentation: Leveraging Global and Contour Accuracy. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1051–1056, doi:10.1109/IVS.2018.8500497.
  6. Kaiming He, Xiangyu Zhang, Shaoqing Ren & Jian Sun (2016): Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, doi:10.1109/CVPR.2016.90.
  7. Geoffrey Hinton, Oriol Vinyals & Jeff Dean (2015): Distilling the Knowledge in a Neural Network, doi:10.48550/ARXIV.1503.02531. Available at
  8. Rafia Inam, Elena Fersman, Klaus Raizer, Ricardo Souza, Amadeu Nascimento & Alberto Hata (2018): Safety for Automated Warehouse exhibiting collaborative robots. In: Safety and Reliability–Safe Societies in a Changing World. CRC Press, pp. 2021–2028, doi:10.1201/9781351174664-254.
  9. Rafia Inam, Klaus Raizer, Alberto Hata, Ricardo Souza, Elena Forsman, Enyu Cao & Shaolei Wang (2018): Risk Assessment for Human-Robot Collaboration in an automated warehouse scenario. In: 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA) 1, pp. 743–751, doi:10.1109/ETFA.2018.8502466.
  10. Alex Krizhevsky & Geoffrey Hinton (2009): Learning multiple layers of features from tiny images.
  11. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár & C. Lawrence Zitnick (2014): Microsoft COCO: Common Objects in Context. In: David Fleet, Tomas Pajdla, Bernt Schiele & Tinne Tuytelaars: Computer Vision – ECCV 2014. Springer International Publishing, Cham, pp. 740–755, doi:10.1007/978-3-319-10602-1_48.
  12. Alberto Marchisio, Muhammad Abdullah Hanif, Faiq Khalid, George Plastiras, Christos Kyrkou, Theocharis Theocharides & Muhammad Shafique (2019): Deep learning for edge computing: Current trends, cross-layer optimizations, and open research challenges. In: 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, pp. 553–559, doi:10.1109/ISVLSI.2019.00105.
  13. Alberto Marchisio, Muhammad Abdullah Hanif, Maurizio Martina & Muhammad Shafique (2018): Prunet: Class-blind pruning method for deep neural networks. In: 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–8, doi:10.1109/IJCNN.2018.8489764.
  14. Yoshitomo Matsubara, Davide Callegaro, Sabur Baidya, Marco Levorato & Sameer Singh (2020): Head Network Distillation: Splitting Distilled Deep Neural Networks for Resource-Constrained Edge Computing Systems. IEEE Access 8, pp. 212177–212193, doi:10.1109/ACCESS.2020.3039714.
  15. Yoshitomo Matsubara & Marco Levorato (2020): Neural Compression and Filtering for Edge-assisted Real-time Object Detection in Challenged Networks. CoRR abs/2007.15818, doi:10.48550/arXiv.2007.15818. ArXiv:2007.15818.
  16. Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila & Jan Kautz (2016): Pruning Convolutional Neural Networks for Resource Efficient Transfer Learning. CoRR abs/1611.06440, doi:10.48550/arXiv.1611.06440. ArXiv:1611.06440.
  17. Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga & Adam Lerer (2017): Automatic differentiation in pytorch.
  18. Naigong Yu, Panna Jiao & Yuling Zheng (2015): Handwritten digits recognition base on improved LeNet5. In: The 27th Chinese Control and Decision Conference (2015 CCDC). IEEE, pp. 4871–4875, doi:10.1109/CCDC.2015.7162796.

Comments and questions to:
For website issues: