References

  1. H. Alpert (2009): Differences of multiple Fibonacci numbers. INTEGERS 9, doi:10.1515/INTEG.2009.061. Paper #A57.
  2. J. Berstel (2001): An exercise on Fibonacci representations. RAIRO Inform. Théor. App. 35, pp. 491–498, doi:10.1051/ita:2001127.
  3. J. L. Brown, Jr. (1965): A new characterization of the Fibonacci numbers. Fibonacci Quart. 3(1), pp. 1–8.
  4. J. L. Brown, Jr. (1969): Unique representation of integers as sums of distinct Lucas numbers. Fibonacci Quart. 7, pp. 243–252.
  5. V. Bruyère, G. Hansel, C. Michaux & R. Villemaire (1994): Logic and p-recognizable sets of integers. Bull. Belgian Math. Soc. 1, pp. 191–238, doi:10.36045/bbms/1103408547. Corrigendum,ıt Bull. Belg. Math. Soc. 1 (1994), p. 577.
  6. J. R. Büchi (1960): Weak second-order arithmetic and finite automata. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 6, pp. 66–92, doi:10.1002/malq.19600060105. Reprinted in S. Mac Lane and D. Siefkes, eds.,ıt The Collected Works of J. Richard Büchi, Springer-Verlag, 1990, pp. 398–424.
  7. M. W. Bunder (1992): Zeckendorf representations using negative Fibonacci numbers. Fibonacci Quart. 30, pp. 111–115.
  8. L. Carlitz, R. Scoville & V.E. Hoggatt, Jr. (1972): Fibonacci representations of higher order. Fibonacci Quart. 10, pp. 43–69, 94.
  9. P. Hajnal (2023): A short note on numeration systems with negative digits allowed. Bull. Inst. Combin. Appl. 97, pp. 54–66.
  10. J. E. Hopcroft & J. D. Ullman (1979): Introduction to Automata Theory, Languages, and Computation. Addison-Wesley.
  11. A. F. Horadam (1993): Zeckendorf representations of positive and negative integers by Pell numbers. In: G. E. Bergum, A. N. Philippou & A. F. Horadam: Applications of Fibonacci Numbers 5. Kluwer, pp. 305–316, doi:10.1007/978-94-011-2058-6_29.
  12. C. G. Lekkerkerker (1952): Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci. Simon Stevin 29, pp. 190–195.
  13. H. Mousavi (2016): Automatic theorem proving in Walnut. Arxiv preprint arXiv:1603.06017 [cs.FL], available at http://arxiv.org/abs/1603.06017.
  14. H. Mousavi, L. Schaeffer & J. Shallit (2016): Decision Algorithms for Fibonacci-Automatic Words, I: Basic Results. RAIRO Inform. Théor. App. 50, pp. 39–66, doi:10.1051/ita/2016010.
  15. A. Ostrowski (1922): Bemerkungen zur Theorie der Diophantischen Approximationen. Abh. Math. Sem. Hamburg 1, pp. 77–98,250–251, doi:10.1007/BF02940595. Reprinted inıt Collected Mathematical Papers, Vol. 3, pp. 57–80.
  16. H. Park, B. Cho, D. Cho, Y. D. Cho & J. Park (2020): Representations of integers as sums of Fibonacci numbers. Symmetry 12(10), doi:10.3390/sym12101625. Paper 1625.
  17. N. Robbins (1996): Fibonacci partitions. Fibonacci Quart. 34, pp. 306–313.
  18. J. Shallit (2021): Robbins and Ardila meet Berstel. Inform. Process. Lett. 167, doi:10.1016/j.ipl.2020.106081. Paper 106081.
  19. J. Shallit (2022): The Logical Approach to Automatic Sequences: Exploring Combinatorics on Words with Walnut. London Math. Soc. Lecture Notes Series 482. Cambridge University Press, doi:10.1017/9781108775267.
  20. E. Zeckendorf (1972): Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Liège 41, pp. 179–182.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org