References

  1. Andris Ambainis & Abuzer Yakaryılmaz (To appear): Automata: From Mathematics to Applications, chapter Automata and Quantum Computing. Available at http://arxiv.org/abs/1507.01988.
  2. Aleksandrs Belovs, Juan Andres Montoya & Abuzer Yakaryılmaz (2016): Can one quantum bit separate any pair of words with zero-error?. Technical Report. Available at http://arxiv.org/abs/1602.07967.
  3. Marek Chrobak & Ming Li (1988): k+1 Heads are Better than k for \voidb@x PDA s. Journal of Computer and System Sciences 37, pp. 144–155, doi:10.1016/0022-0000(88)90004-9.
  4. Alejandro Díaz-Caro & Abuzer Yakaryılmaz (2016): Affine Computation and Affine Automaton. In: Computer Science - Theory and Applications, Lecture Notes in Computer Science 9691. Springer, pp. 146–160, doi:10.1007/978-3-319-46976-8.
  5. Cynthia Dwork & Larry Stockmeyer (1992): Finite state verifiers \voidb@x I: The power of interaction. Journal of the ACM 39(4), pp. 800–828, doi:10.1145/146585.146599.
  6. Viliam Geffert & Abuzer Yakaryılmaz (2015): Classical Automata on Promise Problems. Discrete Mathematics & Theoretical Computer Science 17(2), pp. 157–180, doi:10.1007/978-3-319-09704-6_12.
  7. S. A. Greibach (1978): Remarks on Blind and Partially Blind One-Way Multicounter Machines. Theoretical Computer Science 7, pp. 311–324, doi:10.1016/0304-3975(78)90020-8.
  8. Mika Hirvensalo, Etienne Moutot & Abuzer Yakaryılmaz (2017): On the Computational Power of Affine Automata. In: Language and Automata Theory and Applications, Lecture Notes in Computer Science 10168, pp. 405–417, doi:10.1007/978-3-319-41312-9_10.
  9. Rishat Ibrahimov, Kamil Khadiev, Krisjanis Prusis, Jevgenijs Vihrovs & Abuzer Yakaryılmaz (2017): Zero-Error Affine, Unitary, and Probabilistic OBDDs. Technical Report. Available at http://arxiv.org/abs/1703.07184.
  10. Masaki Nakanishi & Abuzer Yakaryılmaz (2015): Classical and Quantum Counter Automata on Promise Problems. In: Implementation and Application of Automata, LNCS 9223. Springer, pp. 224–237, doi:10.1007/978-3-319-22360-5_19.
  11. Jibran Rashid & Abuzer Yakaryılmaz (2014): Implications of quantum automata for contextuality. In: Implementation and Application of Automata, LNCS 8587. Springer, pp. 318–331, doi:10.1007/978-3-319-08846-4_24.
  12. Arnold L. Rosenberg (1966): On multi-head finite automata. IBM Journal of Research and Development 10(5), pp. 388–394, doi:10.1147/rd.105.0388.
  13. A. C. Cem Say & Abuzer Yakaryılmaz (2014): Quantum Finite Automata: A Modern Introduction. In: Computing with New Resources, LNCS 8808. Springer International Publishing, pp. 208–222, doi:10.1007/978-3-319-13350-8_16.
  14. A. C. Cem Say & Abuzer Yakary´┐Żlmaz (2012): Quantum counter automata. International Journal of Foundations of Computer Science 23(5), pp. 1099–1116, doi:10.1016/S0304-3975(01)00412-1.
  15. Marcos Villagra & Abuzer Yakaryılmaz (2016): Language Recognition Power and Succinctness of Affine Automata. In: Unconventional Computation and Natural Computation, Lecture Notes in Computer Science 9726. Springer, pp. 116–129, doi:10.1007/978-3-319-34171-2_11.
  16. Abuzer Yakaryilmaz (2011): Superiority of One-Way and Realtime Quantum Machines and New Directions. In: Third Workshop on Non-Classical Models for Automata and Applications - NCMA 2011, books@ocg.at 282. Austrian Computer Society, pp. 209–224. Available at http://arxiv.org/abs/1102.3093v1.
  17. Abuzer Yakaryılmaz (2012): Superiority of one-way and realtime quantum machines. RAIRO - Theoretical Informatics and Applications 46(4), pp. 615–641, doi:10.1051/ita/2012018.
  18. Abuzer Yakaryılmaz, Rūsiņš Freivalds, A. C. Cem Say & Ruben Agadzanyan (2012): Quantum computation with write-only memory. Natural Computing 11(1), pp. 81–94, doi:10.1007/s11047-011-9270-0.
  19. Abuzer Yakaryılmaz & A. C. Cem Say (2010): Succinctness of two-way probabilistic and quantum finite automata. Discrete Mathematics and Theoretical Computer Science 12(2), pp. 19–40.
  20. Abuzer Yakaryılmaz & A. C. Cem Say (2013): Proving the Power of Postselection. Fundamenta Informaticae 123(1), pp. 107–134.
  21. Sheng Yu (1989): A pumping lemma for deterministic context-free languages. Information Processing Letters 31(1), pp. 47–51, doi:10.1016/0020-0190(89)90108-7.

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org