1. Rajeev Alur & Parthasarathy Madhusudan (2004): Visibly pushdown languages. In: STOC '04: Proceedings of the thirty-sixth annual ACM symposium on Theory of computing. ACM Press, New York, NY, USA, pp. 202–211, doi:10.1145/1007352.1007390.
  2. Christel Baier & Joost-Pieter Katoen (2008): Principles of Model Checking. MIT Press.
  3. T. Cachat, J. Duparc & W. Thomas (2002): Solving Pushdown Games with a Σ_3 Winning Condition. In: Proceedings of the 11th Annual Conference of the European Association for Computer Science Logic, CSL 2002, Lecture Notes in Computer Science 2471. Springer, pp. 322–336, doi:10.1007/3-540-45793-3_22.
  4. Olivier Carton & Ramón Maceiras (1999): Computing the Rabin Index of a Parity Automaton. ITA 33(6), pp. 495–506, doi:10.1051/ita:1999129.
  5. Rina S. Cohen & Arie Y. Gold (1978): Omega-Computations on Deterministic Pushdown Machines. JCSS 16(3), pp. 275–300, doi:10.1016/0022-0000(78)90019-3.
  6. Javier Esparza, David Hansel, Peter Rossmanith & Stefan Schwoon (2000): Efficient Algorithms for Model Checking Pushdown Systems. In: CAV, pp. 232–247, doi:10.1007/10722167_20.
  7. W. Fridman (2010): Formats of Winning Strategies for Six Types of Pushdown Games. In: A. Montanari, M. Napoli & M. Parente: Proceedings of the First Symposium on Games, Automata, Logic, and Formal Verification, GandALF 2010 25. Electronic Proceedings in Theoretical Computer Science, pp. 132–145, doi:10.4204/EPTCS.25.14.
  8. Erich Grädel, Wolfgang Thomas & Thomas Wilke (2002): Automata, Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001]. Lecture Notes in Computer Science 2500. Springer, doi:10.1007/3-540-36387-4.
  9. John E. Hopcroft & Jeffrey D. Ullman (1979): Introduction to Automata Theory, Languages, and Computation. Addison Wesley.
  10. Matti Linna (1977): A Decidability Result for Deterministicıt omega-Context-Free Languages. Theor. Comput. Sci. 4(1), pp. 83–98, doi:10.1016/0304-3975(77)90058-5.
  11. Christof Löding, Parthasarathy Madhusudan & Oliver Serre (2004): Visibly pushdown games. In: FSTTCS 2004, Lecture Notes in Computer Science 3328. Springer, pp. 408–420, doi:10.1007/978-3-540-30538-5_34.
  12. Christof Löding & Stefan Repke (2012): Regularity Problems for Weak Pushdown ω-Automata and Games. In: Mathematical Foundations of Computer Science 2012, Lecture Notes in Computer Science 7464. Springer Berlin / Heidelberg, pp. 764–776, doi:10.1007/978-3-642-32589-2_66.
  13. Dominique Perrin & Jean-Éric Pin (2004): Infinite words. Pure and Applied Mathematics 141. Elsevier.
  14. Stefan Repke (2014): Simplification Problems for Automata and Games. RWTH Aachen, Germany.
  15. Géraud Sénizergues (2001): L(A)=L(B)? decidability results from complete formal systems. Theor. Comput. Sci. 251(1-2), pp. 1–166, doi:10.1016/S0304-3975(00)00285-1.
  16. Ludwig Staiger (1983): Finite-State ω-Languages. JCSS 27(3), pp. 434–448. Available at
  17. Richard E. Stearns (1967): A Regularity Test for Pushdown Machines. Information and Control 11(3), pp. 323–340, doi:10.1016/S0019-9958(67)90591-8.
  18. Philipp Stephan (2006): Deterministic Visibly Pushdown Automata over Infinite Words. Diploma thesis. RWTH Aachen.
  19. Howard Straubing (1994): Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Basel, Switzerland, doi:10.1007/978-1-4612-0289-9.
  20. Leslie G. Valiant (1975): Regularity and Related Problems for Deterministic Pushdown Automata. J. ACM 22(1), pp. 1–10. Available at
  21. William W. Wadge (1984): Reducibility and Determinateness on the Baire Space. University of California, Berkeley.
  22. Igor Walukiewicz (2001): Pushdown Processes: Games and Model Checking. Information and Computation 164(2), pp. 234–263, doi:10.1006/inco.2000.2894.

Comments and questions to:
For website issues: