1. P. A. Abdulla, Y.-F. Chen, L. Clemente, L. Holík, C.-D. Hong, R. Mayr & T. Vojnar (2010): Simulation Subsumption in Ramsey-Based Büchi Automata Universality and Inclusion Testing. In: Proc. 22nd Int. Conf. on Computer-Aided Verification, CAV'10, LNCS 6174. Springer, pp. 132–147, doi:10.1007/978-3-642-14295-6_14.
  2. P. Aziz Abdulla, Y.-F. Chen, L. Clemente, L. Holík, C.-D. Hong, R. Mayr & T. Vojnar (2011): Advanced Ramsey-Based Büchi Automata Inclusion Testing. In: Proc. 22nd Int. Conf. on Concurrency Theory, CONCUR'11, LNCS 6901. Springer, pp. 187–202, doi:10.1007/978-3-642-23217-6_13.
  3. Peter Van Emde Boas (1997): The Convenience of Tilings. In: In Complexity, Logic, and Recursion Theory. Marcel Dekker Inc, pp. 331–363, doi:
  4. J. R. Büchi (1962): On a Decision Method in Restricted Second Order Arithmetic. In: Proc. Congress on Logic, Method, and Philosophy of Science. Stanford University Press, Stanford, CA, USA, pp. 1–12, doi:10.1007/978-1-4613-8928-6_23.
  5. D. Bustan & O. Grumberg (2003): Simulation-based minimization. ACM Trans. Comput. Logic 4(2), pp. 181–206, doi:10.1145/635499.635502.
  6. G. Cécé & A. Finkel (2005): Verification of programs with half-duplex communication. Inf. Comput. 202(2), pp. 166–190, doi:10.1016/j.ic.2005.05.006.
  7. B. S. Chlebus (1986): Domino-Tiling Games. Journal of Computer and System Sciences 32, pp. 374–392, doi:10.1016/0022-0000(86)90036-X.
  8. L. Clemente (2012): Generalized Simulation Relations with Applications in Automata Theory. University of Edinburgh.
  9. Lorenzo Clemente & Richard Mayr (2013): Advanced automata minimization. In: Proc. 40th Symp. on Principles of Programming Languages, POPL'13. ACM, pp. 63–74, doi:10.1145/2429069.2429079.
  10. C. Dax, M. Hofmann & M. Lange (2006): A proof system for the linear time μ-calculus. In: Proc. 26th Conf. on Foundations of Software Technology and Theoretical Computer Science, FSTTCS'06, LNCS 4337. Springer, pp. 274–285, doi:10.1007/11944836_26.
  11. D. L. Dill, A. J. Hu & H. Wong-Toi (1991): Checking for Language Inclusion Using Simulation Preorders. In: Proc. 3rd Int. Workshop on Computer-Aided Verification, CAV'91, LNCS 575. Springer, pp. 255–265, doi:10.1007/3-540-55179-4_25.
  12. L. Doyen & J.-F. Raskin (2009): Antichains for the Automata-Based Approach to Model-Checking. Logical Methods in Computer Science 5(1), doi:10.2168/LMCS-5(1:5)2009.
  13. K. Etessami & G. J. Holzmann (2000): Optimizing Büchi Automata. In: Proc. 11th Int. Conf. on Concurrency Theory, CONCUR'00, LNCS 1877. Springer, pp. 153–167, doi:10.1007/3-540-44618-4_13.
  14. K. Etessami, T. Wilke & R. A. Schuller (2001): Fair Simulation Relations, Parity Games, and State Space Reduction for Büchi Automata. In: Proc. 28th Int. Coll. on Algorithms, Languages and Programming, ICALP'01, LNCS 2076. Springer, pp. 694–707, doi:10.1137/S0097539703420675.
  15. Kousha Etessami (2002): A Hierarchy of Polynomial-Time Computable Simulations for Automata. In: LuboÅ¡ Brim, Mojmír KÅ™etínský, Antonín Kučera & Petr Jančar: CONCUR 2002 — Concurrency Theory, Lecture Notes in Computer Science 2421. Springer Berlin Heidelberg, pp. 131–144, doi:10.1007/3-540-45694-5_10.
  16. S. Fogarty & M. Y. Vardi (2010): Efficient Büchi Universality Checking. In: Proc. 16th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems, TACAS'10, LNCS 6015. Springer, pp. 205–220, doi:10.1007/978-3-642-12002-2_17.
  17. S. Fogarty & M. Y. Vardi (2012): Büchi Complementation and Size-Change Termination. Logical Methods in Computer Science 8(1), doi:10.2168/LMCS-8(1:13)2012.
  18. S. Gurumurthy, R. Bloem & F. Somenzi (2002): Fair simulation minimization. In: Proc. 14th Int. Conf. on Computer-Aided Verification, CAV'02, LNCS 2404. Springer, pp. 610–624, doi:10.1007/3-540-45657-0_51.
  19. T. A. Henzinger, O. Kupferman & S. K. Rajamani (2002): Fair Simulation. Inf. Comput. 173(1), pp. 64–81, doi:10.1006/inco.2001.3085.
  20. M. Holtmann, L. Kaiser & W. Thomas (2012): Degrees of Lookahead in Regular Infinite Games. Logical Methods in Computer Science 8(3), doi:10.2168/LMCS-8(3:24)2012.
  21. Gerard J. Holzmann (2004): The SPIN Model Checker - primer and reference manual. Addison-Wesley.
  22. M. Hutagalung, M. Lange & É. Lozes (2013): Revealing vs. Concealing: More Simulation Games for Büchi Inclusion. In: Proc. 7th Int. Conf. on Language and Automata Theory and Applications, LATA'13, LNCS. Springer, pp. 347–358, doi:10.1007/978-3-642-37064-9_31.
  23. O. Kupferman & M. Y. Vardi (2001): Weak Alternating Automata Are Not That Weak. ACM Trans. on Comput. Logic 2(3), pp. 408–429, doi:10.1145/377978.377993.
  24. C. S. Lee, N. D. Jones & A. M. Ben-Amram (2001): The size-change principle for program termination. In: Proc. 28th Symp. on Principles of Programming Languages, POPL'01. ACM, pp. 81–92, doi:10.1145/360204.360210.
  25. A. R. Meyer & L. J. Stockmeyer (1973): Word problems requiring exponential time. In: Proc. 5th Symp. on Theory of Computing, STOC'73. ACM, New York, pp. 1–9, doi:10.1145/800125.804029.
  26. F. P. Ramsey (1930): On a problem in formal logic. Proc. London Math. Soc. (3) 30, pp. 264–286, doi:10.1007/978-0-8176-4842-8_1.
  27. S. Safra (1988): On the complexity of ω-automata. In: Proc. 29th Symp. on Foundations of Computer Science, FOCS'88. IEEE, pp. 319–327, doi:10.1109/SFCS.1988.21948.
  28. W. J. Savitch (1970): Relationships between nondeterministic and deterministic tape complexities. Journal of Computer and System Sciences 4, pp. 177–192, doi:10.1016/S0022-0000(70)80006-X.
  29. W. Thomas (1999): Complementation of Büchi automata revisited. In: J. Karhumäki et al.: Jewels are Forever, Contributions on Theoretical Computer Science in Honor of Arto Salomaa. Springer, pp. 109–122, doi:10.1007/978-3-642-60207-8_10.
  30. M. Y. Vardi (1996): An Automata-Theoretic Approach to Linear Temporal Logic, pp. 238–266, LNCS 1043. Springer, New York, NY, USA, doi:10.1007/3-540-60915-6_6.

Comments and questions to:
For website issues: