1. M. A. Arbib (1969): Theories of Abstract Automata. Automatic Computation. Prentice-Hall, London.
  2. A. Badr, V. Geffert & I. Shipman (2009): Hyper-Minimizing Minimized Deterministic Finite State Automata. RAIRO–Informatique théorique et Applications / Theoretical Informatics and Applications 43(1), pp. 69–94, doi:10.1051/ita:2007061.
  3. J. Brzozowski & B. Liu (2021): Syntactic Complexity of Finite/Cofinite, Definite, and Reverse Definite Languages. arXiv:1203.2873v1 [cs.FL].
  4. J. A. Brzozowski & F. E. Fitch (1980): Languages of R-Trivial Monoids. Journal of Computer and System Sciences 20(1), pp. 32–49, doi:10.1016/0022-0000(80)90003-3.
  5. J.-M. Champarnaud, J.-P. Dubernard, H. Jeanne & L. Mignot (2013): Two-Sided Derivatives for Regular Expressions and for Hairpin Expressions. In: A. H. Dediu, C. Martín-Vide & B. Truthe: Proc. of the 7th International Conference on Language and Automata Theory and Applications, LNCS 7810. Springer, Bilbao, Spain, pp. 202–213, doi:10.1007/978-3-642-37064-9_19.
  6. I. M. Havel (1969): The theory of regular events II. Kybernetika 6, pp. 520–544.
  7. M. Holzer & S. Jakobi (2013): Minimization and Characterizations for Biautomata. In: S. Bensch, F. Drewes, R. Freund & F. Otto: Proc. of the 5th International Workshop on Non-Classical Models of Automata and Applications, 294. Österreichische Computer Gesellschaft, Umeå, Sweden, pp. 179–193.
  8. M. Holzer & S. Jakobi (2013): Nondeterministic Biautomata and Their Descriptional Complexity. In: H. Jürgensen & R. Reis: Proc. of the 15th International Workshop on Descriptional Complexity of Formal Systems, LNCS 8031. Springer, London, Ontario, Canada, pp. 112–123, doi:10.1007/978-3-642-39310-5_12.
  9. M. Holzer & S. Jakobi (2014): Minimal and Hyper-Minimal Biautomata. IFIG Research Report 1401. Institut für Informatik, Justus-Liebig-Universität Gießen, Arndtstr. 2, D-35392 Gießen, Germany.
  10. G. Jirásková & O. Klíma (2012): Descriptional Complexity of Biautomata. In: M. Kutrib, N. Moreira & R. Reis: Proc. of the 14th International Workshop Descriptional Complexity of Formal Systems, LNCS 7386. Springer, Braga, Portugal, pp. 196–208, doi:10.1007/978-3-642-31623-4_15.
  11. O. Klíma & L. Polák (2012): Biautomata for k-Piecewise Testable Languages. In: H.-C. Yen & O. H. Ibarra: Proc. of the 16th International Conference Developments in Language Theory, LNCS 7410. Springer, Taipei, Taiwan, pp. 344–355, doi:10.1007/978-3-642-31653-1_31.
  12. O. Klíma & L. Polák (2012): On Biautomata. RAIRO–Informatique théorique et Applications / Theoretical Informatics and Applications 46(4), pp. 573–592, doi:10.1051/ita/2012014.
  13. R. Loukanova (2007): Linear Context Free Languages. In: C. B. Jones, Z. Liu & J. Woodcock: Proc. of the 4th International Colloquium Theoretical Aspects of Computing, LNCS 4711. Springer, Macau, China, pp. 351–365.
  14. R. McNaughton & S. Papert (1971): Counter-free automata. Research monographs 65. MIT Press.
  15. M. L. Minsky (1967): Computation: Finite and Infinite Machines. Automatic Computation. Prentice-Hall.
  16. M. Perles, M. O. Rabin & E. Shamir (1963): The Theory of Definite Automata. IEEE Transactions on Electronic Computers EC-12(3), pp. 233–243, doi:10.1109/PGEC.1963.263534.
  17. A. L. Rosenberg (1967): A Machine Realization of the Linear Context-Free Languages. Information and Control 10, pp. 175–188, doi:10.1016/S0019-9958(67)80006-8.
  18. H.-J. Shyr & G. Thierrin (1974): Ordered Automata and Associated Languages. Tamkang Journal of Mathematics 5(1).
  19. I. Simon (1975): Piecewise Testable Events. In: H. Brakhage: Proc. of the 2nd GI Conference on Automata Theory and Formal Languages, LNCS 33. Springer, Kaiserslautern, Germany, pp. 214–222.
  20. G. Thierrin (1968): Permutation Automata. Mathematical Systems Theory 2(1), pp. 83–90, doi:10.1007/BF01691347.

Comments and questions to:
For website issues: