1. J.-P. Allouche & J. Shallit (1999): The ubiquitous Prouhet-Thue-Morse sequence. In: C. Ding, T. Helleseth & H. Niederreiter: Sequences and Their Applications, Proceedings of SETA '98. Springer-Verlag, pp. 1–16, doi:10.1007/978-1-4471-0551-0_1.
  2. F. Blanchard, E. Formenti & P. Kůrka (1997): Cellular automata in the Cantor, Besicovitch, and Weyl topological spaces. Complex Systems 11, pp. 107–123.
  3. V. D. Blondel, J. Cassaigne & R. M. Jungers (2009): On the number of α-power-free binary words for 2 < α7/3. Theoret. Comput. Sci. 410, pp. 2823–2833, doi:10.1016/j.tcs.2009.01.031.
  4. S. Brown, N. Rampersad, J. Shallit & T. Vasiga (2006): Squares and overlaps in the Thue-Morse sequence and some variants. RAIRO Inform. Théor. App. 40, pp. 473–484, doi:10.1051/ita:2006030.
  5. E. D. Fife (1980): Binary sequences which contain no BBb. Trans. Amer. Math. Soc. 261, pp. 115–136, doi:10.1090/S0002-9947-1980-0576867-5.
  6. E. Grant, J. Shallit & T. Stoll (2009): Bounds for the discrete correlation of infinite sequences on k symbols and generalized Rudin-Shapiro sequences. Acta Arith. 140, pp. 345–368, doi:10.4064/aa140-4-5.
  7. K. Mahler (1927): On the translation properties of a simple class of arithmetical functions. J. Math. and Phys. 6, pp. 158–163.
  8. P. Ochem, N. Rampersad & J. Shallit (2008): Avoiding approximate squares. Internat. J. Found. Comp. Sci. 19, pp. 633–648, doi:10.1142/S0129054108005863.
  9. N. Rampersad, J. Shallit & A. Shur (2011): Fife's theorem for (7/3)-powers. In: P. Ambroz, S. Holub & Z. Masakova: WORDS 2011, 8th International Conference, pp. 189–198, doi:10.4204/EPTCS.63.25.
  10. J. Shallit (2011): Fife's theorem revisited. In: G. Mauri & A. Leporati: Developments in Language Theory, Lecture Notes in Computer Science 6795. Springer-Verlag, pp. 397–405, doi:10.1007/978-3-642-22321-1_34.
  11. R. Yarlagadda & J. E. Hershey (1984): Spectral properties of the Thue-Morse sequence. IEEE Trans. Commun. 32, pp. 974–977, doi:10.1109/TCOM.1984.1096162.
  12. R. Yarlagadda & J. E. Hershey (1990): Autocorrelation properties of the Thue-Morse sequence and their use in synchronization. IEEE Trans. Commun. 38, pp. 2099–2102, doi:10.1109/26.64649.

Comments and questions to:
For website issues: