1. Ross A. Beaumont & Raymond P. Peterson (1955): Set-transitive permutation groups. Canadian Journal of Mathematics 7, pp. 35–42, doi:10.4153/CJM-1955-005-x.
  2. Janusz Brzozowski & Gareth Davies (2013): Maximal Syntactic Complexity of Regular Languages Implies Maximal Quotient Complexities of Atoms. Available at
  3. Janusz Brzozowski & Hellis Tamm (2013): Complexity of Atoms of Regular Languages. Int. J. Found. Comput. Sci. 24(7), pp. 1009–1027, doi:10.1142/S0129054113400285.
  4. Janusz Brzozowski & Hellis Tamm (2014): Theory of Átomata. Theoret. Comput. Sci., doi:10.1016/j.tcs.2014.04.016. In press..
  5. Szabolcs Iván (2014): Handle Atoms with Care. Available at
  6. Donald Livingstone & Ascher Wagner (1965): Transitivity of finite permutation groups on unordered sets. Mathematische Zeitschrift 90(5), pp. 393–403, doi:10.1007/BF01112361.
  7. Donald B. McAlister (1998): Semigroups generated by a group and an idempotent. Communications in Algebra 26(2), pp. 243–254, doi:10.1080/00927879808826145.

Comments and questions to:
For website issues: