References

  1. S. Abramsky & B. Coecke (2004): A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 415–425, doi:10.5555/1018438.1021878. arXiv:quant-ph/0402130.
  2. Mario Alvarez-Picallo, Dan Ghica, David Sprunger & Fabio Zanasi (2022): Rewriting for Monoidal Closed Categories: 7th International Conference on Formal Structures for Computation and Deduction, FSCD 2022. 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022), doi:10.4230/LIPIcs.FSCD.2022.29. Available at http://www.scopus.com/inward/record.url?scp=85133671634&partnerID=8YFLogxK. Publisher: Schloss Dagstuhl.
  3. John C. Baez & Jade Master (2020): Open Petri Nets. Mathematical Structures in Computer Science 30(3), pp. 314–341, doi:10.1017/S0960129520000043. Available at http://arxiv.org/abs/1808.05415. ArXiv:1808.05415 [cs, math].
  4. Guillaume Boisseau & Paweł Sobociński (2022): String Diagrammatic Electrical Circuit Theory. Electronic Proceedings in Theoretical Computer Science 372, pp. 178–191, doi:10.4204/EPTCS.372.13. Available at http://arxiv.org/abs/2106.07763. ArXiv:2106.07763 [cs].
  5. Filippo Bonchi, Robin Piedeleu, Pawel Sobociński & Fabio Zanasi (2019): Graphical Affine Algebra. In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–12, doi:10.1109/LICS.2019.8785877.
  6. Filippo Bonchi, Pawel Sobocinski & Fabio Zanasi (2017): Interacting Hopf Algebras. Journal of Pure and Applied Algebra 221(1), pp. 144–184, doi:10.1016/j.jpaa.2016.06.002. Available at http://arxiv.org/abs/1403.7048. ArXiv:1403.7048 [cs, math].
  7. Filippo Bonchi, Pawel Sobociński & Fabio Zanasi (2014): A Categorical Semantics of Signal Flow Graphs CONCUR 2014 - Concurrency Theory - 25th International Conference, doi:10.1007/978-3-662-44584-6_30. Available at https://hal.science/hal-02134182.
  8. Kenta Cho & Bart Jacobs (2019): Disintegration and Bayesian Inversion via String Diagrams. Mathematical Structures in Computer Science 29(7), pp. 938–971, doi:10.1017/S0960129518000488. Available at http://arxiv.org/abs/1709.00322. ArXiv:1709.00322 [cs].
  9. B. Coecke (2000): Structural characterization of compoundness. International Journal of Theoretical Physics 39, pp. 585–594, doi:10.1023/A:1003677418744.
  10. B. Coecke & R. Duncan (2011): Interacting quantum observables: categorical algebra and diagrammatics. New Journal of Physics 13, pp. 043016, doi:10.1088/1367-2630/13/4/043016. arXiv:quant-ph/09064725.
  11. B. Coecke, D.J. Moore & I. Stubbe (2001): Quantaloids describing causation and propagation of physical properties. Foundations of Physics Letters 14, pp. 133–146, doi:10.1023/A:1012377520222. ArXiv:quant-ph/0009100.
  12. B. Coecke, É. O. Paquette & D. Pavlovi\'c (2010): Classical and quantum structuralism. In: S. Gay & I. Mackie: Semantic Techniques in Quantum Computation. Cambridge University Press, pp. 29–69, doi:10.1017/CBO9781139193313.003. arXiv:0904.1997.
  13. B. Coecke & D. Pavlovic (2007): Quantum measurements without sums. In: G. Chen, L. Kauffman & S. Lamonaco: Mathematics of Quantum Computing and Technology. Taylor and Francis, pp. 567–604, doi:10.1201/9781584889007. arXiv:quant-ph/0608035.
  14. Bob Coecke & Stefano Gogioso (2023): Quantum in Pictures: A New Way to Understand the Quantum World. Cambridge Quantum.
  15. Bob Coecke & Aleks Kissinger (2017): Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, Cambridge, doi:10.1017/9781316219317. Available at https://www.cambridge.org/core/books/picturing-quantum-processes/1119568B3101F3A685BE832FEEC53E52.
  16. Geoffrey SH Cruttwell, Bruno Gavranović, Neil Ghani, Paul Wilson & Fabio Zanasi (2022): Categorical foundations of gradient-based learning. In: Programming Languages and Systems: 31st European Symposium on Programming, ESOP 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2–7, 2022, Proceedings. Springer International Publishing Cham, pp. 1–28, doi:10.1007/978-3-030-99336-8_1.
  17. David Deutsch (2013): Constructor theory. Synthese 190(18), pp. 4331–4359, doi:10.1007/s11229-013-0279-z.
  18. David Deutsch & Chiara Marletto (2015): Constructor theory of information. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, pp. 20140540, doi:10.1098/rspa.2014.0540.
  19. C.-A. Faure, D. J. Moore & C. Piron (1995): Deterministic evolutions and Schrödinger flows. Helvetica Physica Acta 68(2), pp. 150–157.
  20. Tobias Fritz, Tomáš Gonda & Paolo Perrone (2021): De Finetti's Theorem in Categorical Probability. Journal of Stochastic Analysis 2(4), doi:10.31390/josa.2.4.06. Available at http://arxiv.org/abs/2105.02639. ArXiv:2105.02639 [cs, math, stat].
  21. Dan R. Ghica & Achim Jung (2016): Categorical semantics of digital circuits. In: Proceedings of the 16th Conference on Formal Methods in Computer-Aided Design, FMCAD '16. FMCAD Inc, Austin, Texas, pp. 41–48, doi:10.1109/FMCAD.2016.7886659.
  22. Stefano Gogioso (2019): A process-theoretic church of the larger hilbert space. arXiv preprint arXiv:1905.13117, doi:10.48550/arXiv.1905.13117.
  23. L. Hardy (2011): Foliable operational structures for general probabilistic theories. In: H. Halvorson: Deep Beauty: Understanding the Quantum World through Mathematical Innovation. Cambridge University Press, pp. 409–442, doi:10.1017/CBO9780511976971.013. arXiv:0912.4740.
  24. Nathan Haydon & Paweł Sobociński (2020): Compositional Diagrammatic First-Order Logic. In: Ahti-Veikko Pietarinen, Peter Chapman, Leonie Bosveld-de Smet, Valeria Giardino, James Corter & Sven Linker: Diagrammatic Representation and Inference, Lecture Notes in Computer Science. Springer International Publishing, Cham, pp. 402–418, doi:10.1007/978-3-030-54249-8_32.
  25. Jules Hedges (2015): String diagrams for game theory, doi:10.48550/arXiv.1503.06072. Available at http://arxiv.org/abs/1503.06072. ArXiv:1503.06072 [cs, math].
  26. James Hefford, Vincent Wang & Matthew Wilson (2020): Categories of Semantic Concepts, doi:10.48550/arXiv.2004.10741. Available at http://arxiv.org/abs/2004.10741. ArXiv:2004.10741 [quant-ph].
  27. C. A. R. Hoare & J. He (1987): The weakest prespecification. Information Processing Letters 24, pp. 127–132, doi:10.1016/0020-0190(87)90106-2.
  28. Bart Jacobs, Aleks Kissinger & Fabio Zanasi (2019): Causal Inference by String Diagram Surgery, doi:10.48550/arXiv.1811.08338. Available at http://arxiv.org/abs/1811.08338. ArXiv:1811.08338 [cs, math].
  29. J. M. Jauch (1968): Mathematical Foundations of Quantum Mechanics. Addison-Wesley.
  30. Chiara Marletto (2021): The Science of Can and Can't: A Physicist's Journey Through the Land of Counterfactuals. Allen Lane, doi:10.1016/S0262-4079(21)00658-8.
  31. D. J. Moore (1999): On state spaces and property lattices. Studies in History and Philosophy of Modern Physics 30(1), pp. 61–83, doi:10.1016/S1355-2198(98)00033-1.
  32. C. Piron (1976): Foundations of quantum physics. W. A. Benjamin.
  33. J. H. Selby, C. M. Scandolo & B. Coecke (2018): Reconstructing quantum theory from diagrammatic postulates. arXiv preprint arXiv:1802.00367, doi:10.22331/q-2021-04-28-445.
  34. Vincent Wang-Mascianica & Bob Coecke (2021): Talking Space: inference from spatial linguistic meanings, doi:10.48550/arXiv.2109.06554. Available at http://arxiv.org/abs/2109.06554. ArXiv:2109.06554 [cs].
  35. Matthew Wilson, James Hefford, Guillaume Boisseau & Vincent Wang (2021): The Safari of Update Structures: Visiting the Lens and Quantum Enclosures. Electronic Proceedings in Theoretical Computer Science 333, pp. 1–18, doi:10.4204/EPTCS.333.1. Available at http://arxiv.org/abs/2005.05293. ArXiv:2005.05293 [quant-ph].

Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org